Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  i-PI 3.0: A flexible and efficient framework for advanced atomistic simulations

Litman, Y., Kapil, V., Feldman, Y. M. Y., Tisi, D., Begušić, T., Fidanyan, K., et al. (2024). i-PI 3.0: A flexible and efficient framework for advanced atomistic simulations. The Journal of Chemical Physics, 161(6): 062504. doi:10.1063/5.0215869.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
062504_1_5.0215869.pdf (Verlagsversion), 8MB
Name:
062504_1_5.0215869.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2024
Copyright Info:
© Author(s)

Externe Referenzen

ausblenden:
externe Referenz:
https://arxiv.org/abs/2405.15224 (Preprint)
Beschreibung:
-
OA-Status:
Keine Angabe
externe Referenz:
https://doi.org/10.1063/5.0215869 (Verlagsversion)
Beschreibung:
-
OA-Status:
Hybrid
externe Referenz:
https://github.com/i-pi/i-pi (Forschungsdaten)
Beschreibung:
i-PI. The tag v3.0.0-beta was used to generate the examples and benchmarks reported in this article. The data required to reproduce the figures and benchmark simulations are available at https://github.com/i-pi/ipiv3_data.
OA-Status:
Keine Angabe
externe Referenz:
https://doi.org/10.1063/10.0028270 (Ergänzendes Material)
Beschreibung:
Scilight article "Updates to i-PI package improve performance in widely used atomistic simulation software" by A. Liebendorfer
OA-Status:
Keine Angabe

Urheber

ausblenden:
 Urheber:
Litman, Y.1, Autor
Kapil, V.1, 2, 3, Autor
Feldman, Y. M. Y.4, Autor
Tisi, D.5, Autor
Begušić, T.6, Autor
Fidanyan, K.7, Autor           
Fraux, G.5, Autor
Higer, J.8, Autor
Kellner, M.5, Autor
Li, T. E.9, Autor
Pós, E. S.7, Autor           
Stocco, E.7, Autor           
Trenins, G.7, Autor           
Hirshberg, B.4, Autor
Rossi, M.7, Autor                 
Ceriotti, M.5, Autor
Affiliations:
1Y. Hamied Department of Chemistry, University of Cambridge, ou_persistent22              
2Department of Physics and Astronomy, University College London, ou_persistent22              
3Thomas Young Centre and London Centre for Nanotechnology, ou_persistent22              
4School of Chemistry, Tel Aviv University, ou_persistent22              
5Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, ou_persistent22              
6Div. of Chemistry and Chemical Engineering, California Institute of Technology, ou_persistent22              
7Simulations from Ab Initio Approaches, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_3185035              
8School of Physics, Tel Aviv University, ou_persistent22              
9Department of Physics and Astronomy, University of Delaware, ou_persistent22              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Atomic-scale simulations have progressed tremendously over the past decade, largely thanks to the availability of machine-learning interatomic potentials. These potentials combine the accuracy of electronic structure calculations with the ability to reach extensive length and time scales. The i-PI package facilitates integrating the latest developments in this field with advanced modeling techniques thanks to a modular software architecture based on inter-process communication through a socket interface. The choice of Python for implementation facilitates rapid prototyping but can add computational overhead. In this new release, we carefully benchmarked and optimized i-PI for several common simulation scenarios, making such overhead negligible when i-PI is used to model systems up to tens of thousands of atoms using widely adopted machine learning interatomic potentials, such as Behler–Parinello, DeePMD, and MACE neural networks. We also present the implementation of several new features, including an efficient algorithm to model bosonic and fermionic exchange, a framework for uncertainty quantification to be used in conjunction with machine-learning potentials, a communication infrastructure that allows for deeper integration with electronic-driven simulations, and an approach to simulate coupled photon-nuclear dynamics in optical or plasmonic cavities.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2024-04-262024-07-112024-08-142024-08-14
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: arXiv: 2405.15224
DOI: 10.1063/5.0215869
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

ausblenden:
Projektname : -
Grant ID : 101001890
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)
Projektname : Y.L. was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Project No. 467724959. V.K. acknowledges support from the Ernest Oppenheimer Early Career Fellowship and the Sydney Harvey Junior Research Fellowship, Churchill College, University of Cambridge. V.K. is grateful for computational support from the Swiss National Supercomputing Centre under Project No. s1209, the UK national high-performance computing service, ARCHER2, for which access was obtained via the UKCP consortium and the EPSRC under Grant No. ref EP/P022561/1, and the Cambridge Service for Data-Driven Discovery (CSD3). T.B. acknowledges financial support from the Swiss National Science Foundation through the Early Postdoc Mobility Fellowship (Grant No. P2ELP2-199757). B.H. acknowledges support from the USA–Israel Binational Science Foundation (Grant No. 2020083) and the Israel Science Foundation (Grant Nos. 1037/22 and 1312/22). Y.F. was supported by Schmidt Science Fellows, in partnership with the Rhodes Trust. T.E.L. was supported by start-up funds from the University of Delaware Department of Physics and Astronomy. M.R. and E.S. acknowledge computer time from the Max Planck Computing and Data Facility (MPCDF) and funding from the IMPRS-UFAST program and the Lise–Meitner Excellence program. M.R. thanks Jan Berges for a careful read of Sec. V C. M.C., M.K., and D.T. acknowledge funding from the Swiss National Science Foundation (SNSF) under the projects CRSII5_202296 and 200020_214879. M.C. and D.T. also acknowledge the support from the MARVEL National Centre of Competence in Research (NCCR) M.C. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program under Grant No. 101001890-FIAMMA. We thank Eli Fields for helpful comments.
Grant ID : -
Förderprogramm : -
Förderorganisation : -

Quelle 1

ausblenden:
Titel: The Journal of Chemical Physics
  Kurztitel : J. Chem. Phys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 161 (6) Artikelnummer: 062504 Start- / Endseite: - Identifikator: ISSN: 0021-9606
CoNE: https://pure.mpg.de/cone/journals/resource/954922836226