English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Kuznetsov's Fano threefold conjecture via Hochschild-Serre algebra

Lin, X., & Zhang, S. (2024). Kuznetsov's Fano threefold conjecture via Hochschild-Serre algebra. Mathematische Zeitschrift, 308(2): 26. doi:10.1007/s00209-024-03586-6.

Item is

Files

show Files
hide Files
:
2311.06450.pdf (Preprint), 212KB
Name:
2311.06450.pdf
Description:
File downloaded from arXiv at 2024-05-28 14:02
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Lin-Zhang_Kuznetsovs Fano threefold conjecture via Hochschild-Serre algebra_2024.pdf (Publisher version), 281KB
 
File Permalink:
-
Name:
Lin-Zhang_Kuznetsovs Fano threefold conjecture via Hochschild-Serre algebra_2024.pdf
Description:
-
OA-Status:
Visibility:
Restricted ( Max Planck Society (every institute); )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:
Green
Locator:
https://doi.org/10.1007/s00209-024-03586-6 (Publisher version)
Description:
-
OA-Status:
Not specified

Creators

show
hide
 Creators:
Lin, Xun1, Author           
Zhang, Shizhuo1, Author           
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Algebraic Geometry
 Abstract: Let Y be a smooth quartic double solid regarded as a degree 4 hypersurface of the weighted projective space P(1,1,1,1,2). We study the multiplication of Hochschild-Serre algebra of its Kuznetsov component Ku(Y), via matrix factorization. As an application, we give a new disproof of Kuznetsov's Fano threefold conjecture. In appendix, we show kernel of differential of period map for special Gushel-Mukai threefold is of two dimensional by categorical methods, which completes a result in \cite[Theorem 7.8]{debarre2008period}.

Details

show
hide
Language(s): eng - English
 Dates: 2024
 Publication Status: Issued
 Pages: 12
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 2311.06450
DOI: 10.1007/s00209-024-03586-6
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Mathematische Zeitschrift
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Springer
Pages: - Volume / Issue: 308 (2) Sequence Number: 26 Start / End Page: - Identifier: -