English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Serre algebra, matrix factorization and categorical Torelli theorem for hypersurfaces

Lin, X., & Zhang, S. (in press). Serre algebra, matrix factorization and categorical Torelli theorem for hypersurfaces. Mathematische Annalen, Published Online - Print pending. doi:10.1007/s00208-024-02915-8.

Item is

Files

show Files
hide Files
:
2310.09927.pdf (Preprint), 214KB
Name:
2310.09927.pdf
Description:
File downloaded from arXiv at 2024-05-29 10:56
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show
hide
Description:
-
OA-Status:
Green
Locator:
https://doi.org/10.1007/s00208-024-02915-8 (Publisher version)
Description:
-
OA-Status:
Not specified

Creators

show
hide
 Creators:
Lin, Xun1, Author           
Zhang, Shizhuo1, Author           
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Algebraic Geometry, Mathematical Physics, Mathematics
 Abstract: Let X be a smooth Fano variety. We attach a bi-graded associative algebra AS=⨁i,j∈ZHom(Id,SiKu(X)[j]) to the Kuznetsov component Ku(X) whenever it is defined. Then we construct a natural sub-algebra of AS when X is a Fano hypersurface and establish its relation with Jacobian ring J(X). As an application, we prove a categorical Torelli theorem for Fano hypersurface X⊂Pn(n≥2) of degree d if gcd(n+1,d)=1. In addition, we give a new proof of the [Pir22,Theorem1.2] using a similar idea.

Details

show
hide
Language(s): eng - English
 Dates: 2024
 Publication Status: Accepted / In Press
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: No review
 Identifiers: arXiv: 2310.09927
DOI: 10.1007/s00208-024-02915-8
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Mathematische Annalen
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Springer
Pages: - Volume / Issue: - Sequence Number: Published Online - Print pending Start / End Page: - Identifier: -