English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Uncovering kinesin dynamics in neurites with MINFLUX

Wirth, J. O., Schentarra, E.-M., Scheiderer, L., Macarrón-Palacios, V., Tarnawski, M., & Hell, S. W. (2024). Uncovering kinesin dynamics in neurites with MINFLUX. Communications Biology, 7: 661, pp. 1-7. doi:10.1038/s42003-024-06358-4.

Item is

Files

show Files
hide Files
:
CommunicBiol_7_2023_661.pdf (Any fulltext), 2MB
 
File Permalink:
-
Name:
CommunicBiol_7_2023_661.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
CommunicBiol_7_2023_661_Suppl1.pdf (Supplementary material), 353KB
 
File Permalink:
-
Name:
CommunicBiol_7_2023_661_Suppl1.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
CommunicBiol_7_2023_661_Suppl2.pdf (Supplementary material), 2MB
 
File Permalink:
-
Name:
CommunicBiol_7_2023_661_Suppl2.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Not specified

Creators

show
hide
 Creators:
Wirth, Jan Otto1, Author           
Schentarra, Eva-Maria1, Author           
Scheiderer, Lukas1, Author           
Macarrón-Palacios, Victor1, Author           
Tarnawski, Miroslaw, Author
Hell, Stefan W.1, Author                 
Affiliations:
1Optical Nanoscopy, Max Planck Institute for Medical Research, Max Planck Society, ou_2364730              

Content

show
hide
Free keywords: -
 Abstract: Neurons grow neurites of several tens of micrometers in length, necessitating active transport from the cell body by motor proteins. By tracking fluorophores as minimally invasive labels, MINFLUX is able to quantify the motion of those proteins with nanometer/millisecond resolution. Here we study the substeps of a truncated kinesin-1 mutant in primary rat hippocampal neurons, which have so far been mainly observed on polymerized microtubules deposited onto glass coverslips. A gentle fixation protocol largely maintains the structure and surface modifications of the microtubules in the cell. By analyzing the time between the substeps, we identify the ATP-binding state of kinesin-1 and observe the associated rotation of the kinesin-1 head in neurites. We also observed kinesin-1 switching microtubules mid-walk, highlighting the potential of MINFLUX to study the details of active cellular transport.

Details

show
hide
Language(s): eng - English
 Dates: 2024-02-282024-05-202024-05-29
 Publication Status: Published online
 Pages: 7
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1038/s42003-024-06358-4
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Communications Biology
  Abbreviation : Commun. Biol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Springer Nature
Pages: - Volume / Issue: 7 Sequence Number: 661 Start / End Page: 1 - 7 Identifier: ISSN: 2399-3642
CoNE: https://pure.mpg.de/cone/journals/resource/2399-3642