English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Fermionic quantum turbulence: Pushing the limits of high-performance computing

Wlazlowski, G., Forbes, M. M., Sarkar, S. R., Marek, A., & Szpindler, M. (2024). Fermionic quantum turbulence: Pushing the limits of high-performance computing. PNAS Nexus, 3(5): pgae160. doi:10.1093/pnasnexus/pgae160.

Item is

Files

show Files
hide Files
:
Fermionic quantum turbulence Pushing the limits of high-performance computing.pdf (Any fulltext), 4MB
 
File Permalink:
-
Name:
Fermionic quantum turbulence Pushing the limits of high-performance computing.pdf
Description:
-
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Wlazlowski, Gabriel, Author
Forbes, Michael McNeil, Author
Sarkar, Saptarshi Rajan, Author
Marek, Andreas1, Author           
Szpindler, Maciej, Author
Affiliations:
1Max Planck Computing and Data Facility, Max Planck Society, ou_2364734              

Content

show
hide
Free keywords: -
 Abstract: Ultracold atoms provide a platform for analog quantum computer capable of simulating the quantum turbulence that underlies puzzling phenomena like pulsar glitches in rapidly spinning neutron stars. Unlike other platforms like liquid helium, ultracold atoms have a viable theoretical framework for dynamics, but simulations push the edge of current classical computers. We present the largest simulations of fermionic quantum turbulence to date and explain the computing technology needed, especially improvements in the Eigenvalue soLvers for Petaflop Applications library that enable us to diagonalize matrices of record size (millions by millions). We quantify how dissipation and thermalization proceed in fermionic quantum turbulence by using the internal structure of vortices as a new probe of the local effective temperature. All simulation data and source codes are made available to facilitate rapid scientific progress in the field of ultracold Fermi gases.

Details

show
hide
Language(s): eng - English
 Dates: 2024-04-15
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1093/pnasnexus/pgae160
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: PNAS Nexus
  Alternative Title : PNAS Nexus
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Oxford : Oxford University Press
Pages: - Volume / Issue: 3 (5) Sequence Number: pgae160 Start / End Page: - Identifier: ISSN: 2752-6542