English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Milestoning estimators of dissipation in systems observed at a coarse resolution

Blom, K., Song, K., Vouga, E., Godec, A., & Makarov, D. E. (2024). Milestoning estimators of dissipation in systems observed at a coarse resolution. PNAS, 121(17): e2318333121. doi:10.1073/pnas.2318333121.

Item is

Files

show Files
hide Files
:
blom-et-al-2024-milestoning-estimators-of-dissipation-in-systems-observed-at-a-coarse-resolution.pdf (Publisher version), 5MB
 
File Permalink:
-
Name:
Publisher Version
Description:
-
OA-Status:
Visibility:
Restricted ( Max Planck Society (every institute); )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Blom, Kristian1, Author           
Song, Kevin, Author
Vouga, Etienne, Author
Godec, Aljaž1, Author           
Makarov, Dmitrii E., Author
Affiliations:
1Research Group of Mathematical Biophysics, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society, ou_3350133              

Content

show
hide
Free keywords: -
 Abstract: Many nonequilibrium, active processes are observed at a coarse-grained level, where different microscopic configurations are projected onto the same observable state. Such “lumped” observables display memory, and in many cases, the irreversible character of the underlying microscopic dynamics becomes blurred, e.g., when the projection hides dissipative cycles. As a result, the observations appear less irreversible, and it is very challenging to infer the degree of broken time-reversal symmetry. Here we show, contrary to intuition, that by ignoring parts of the already coarse-grained state space we may—via a process called milestoning—improve entropy-production estimates. We present diverse examples where milestoning systematically renders observations “closer to underlying microscopic dynamics” and thereby improves thermodynamic inference from lumped data assuming a given range of memory, and we hypothesize that this effect is quite general. Moreover, whereas the correct general physical definition of time reversal in the presence of memory remains unknown, we here show by means of physically relevant examples that at least for semi-Markov processes of first and second order, waiting-time contributions arising from adopting a naive Markovian definition of time reversal generally must be discarded.

Details

show
hide
Language(s): eng - English
 Dates: 2024-04-162024-04-23
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1073/pnas.2318333121
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : ---
Grant ID : -
Funding program : -
Funding organization : -

Source 1

show
hide
Title: PNAS
  Other : Proceedings of the National Academy of Sciences of the United States of America
  Other : Proceedings of the National Academy of Sciences of the USA
  Abbreviation : Proc. Natl. Acad. Sci. U. S. A.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : National Academy of Sciences
Pages: - Volume / Issue: 121 (17) Sequence Number: e2318333121 Start / End Page: - Identifier: ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230