hide
Free keywords:
-
Abstract:
An AA’3B2B’2O12-type quadruple perovskite oxide of CaCu3Cr2Re2O12 was synthesized at 18 GPa and 1373 K. Both an A- and B-site ordered quadruple perovskite crystal structure was observed, with the space group Pn-3. The valence states are verified to be CaCu32+Cr23+Re25+O12 by bond valence sum calculations and synchrotron X-ray absorption spectroscopy. The spin interaction among Cu2+, Cr3+, and Re5+ generates a ferrimagnetic transition with the Curie temperature (TC) at about 360 K. Moreover, electric transport properties and specific heat data suggest the presence of a half-metallic feature for this compound. The present study provides a promising quadruple perovskite oxide with above-room-temperature ferrimagnetism and possible half-metallic properties, which shows potential in the usage of spintronic devices.