English
English
Deutsch
日本語
Help
Privacy Policy
Disclaimer
Include files
Advanced Search
Browse
START
BASKET (0)
Tools
Item
ITEM ACTIONS
EXPORT
EndNote (UTF-8)
BibTeX
JSON
eSciDoc XML
MarcXML
pdf
docx (MS Word, Open Office)
html (plain)
html (linked)
JSON Snippet
eSciDoc Snippet
Download
E-Mail
Local Tags
Release History
Details
Summary
Ind-étale vs formally étale
Mondal, S., & Mukhopadhyay, A.
(submitted).
Ind-étale vs formally étale.
Item is
Released
show all
hide all
Basic
show
hide
Item Permalink
:
https://hdl.handle.net/21.11116/0000-000F-6C6D-F
Version Permalink
:
https://hdl.handle.net/21.11116/0000-000F-6C6E-E
Genre
:
Preprint
Latex
:
Ind-\'etale vs Formally \'etale
Files
show Files
hide Files
:
2209.09392.pdf (Preprint), 196KB
View
Save
File Permalink
:
https://hdl.handle.net/21.11116/0000-000F-6C6F-D
Name
:
2209.09392.pdf
Description
:
File downloaded from arXiv at 2024-06-14 14:41
OA-Status
:
Green
Visibility
:
Public
MIME-Type / Checksum
:
application/pdf
/ [MD5]
Technical Metadata
:
View
Copyright Date
:
-
Copyright Info
:
-
License
:
http://creativecommons.org/licenses/by/4.0/
Locators
show
hide
Locator
:
https://doi.org/10.48550/arXiv.2209.09392
(Preprint)
Description
:
-
OA-Status
:
Green
Creators
show
hide
Creators
:
Mondal, Shubhodip
1
, Author
Mukhopadhyay, Alapan, Author
Affiliations
:
1
Max Planck Institute for Mathematics, Max Planck Society, ou_3029201
Content
show
hide
Free keywords
:
Mathematics, Algebraic Geometry, Commutative Algebra, K-Theory and Homology, Rings and Algebras
Abstract
:
-
Details
show
hide
Language(s)
:
eng - English
Dates
:
Submitted:
2022-09-19
Publication Status
:
Submitted
Pages
:
-
Publishing info
:
-
Table of Contents
:
-
Rev. Type
:
No review
Identifiers
:
arXiv:
2209.09392
Degree
:
-
Event
show
Legal Case
show
Project information
show
Source 1
show
hide
Title
:
arXiv
Source Genre
:
Web Page
Creator(s)
:
Affiliations
:
Publ. Info
:
-
Pages
:
-
Volume / Issue
:
-
Sequence Number
:
-
Start / End Page
:
-
Identifier
:
-