Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Comparative connectomics of two distantly related nematode species reveals patterns of nervous system evolution

Cook, S., Kalinski, C., Loer, C., Memar, N., Majeed, M., Stephen, S., et al. (submitted). Comparative connectomics of two distantly related nematode species reveals patterns of nervous system evolution.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Cook, SJ, Autor
Kalinski, CA, Autor
Loer, CM, Autor
Memar, N, Autor
Majeed, M, Autor
Stephen, SR, Autor
Bumbarger, DJ1, Autor                 
Riebesell, M1, Autor                 
Schnabel, R, Autor                 
Sommer, RJ1, Autor                 
Hobert, O, Autor
Affiliations:
1Department Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max Planck Society, ou_3371685              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Understanding the evolution of the bilaterian brain requires a detailed exploration of the precise nature of cellular and subcellular differences between related brains. To define the anatomical substrates of evolutionary change in the nervous system, we undertook an electron micrographic reconstruction of the brain of the predatory nematode Pristionchus pacificus. A comparison with the brain of Caenorhabditis elegans, which diverged at least 100 million years ago, reveals a conserved nematode core connectome and a wide range of specific substrates of evolutionary change. These changes include differences in neuronal cell death, neuronal cell position, axo-dendritic projection patterns and many changes in synaptic connectivity of homologous neurons that display no obvious changes in overall neurite morphology and projection patterns. Differences in connectivity are distributed throughout the nervous system arguing against specific hot spots of evolutionary change and extend to differences in neuro/glia connectivity. We observed examples of apparent circuit drift, where changes in morphology and connectivity of a neuron do not appear to alter its behavioral output. In conclusion, our comprehensive comparison of distantly related nematode species provides novel vistas on patterns of conservation as well as the substrates of evolutionary change in the brain that span multiple organizational levels.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2024-06
 Publikationsstatus: Eingereicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1101/2024.06.13.598904
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: