Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Synapse-type-specific competitive Hebbian learning forms functional recurrent networks

Eckmann, S., Young, E. J., & Gjorgjieva, J. (2024). Synapse-type-specific competitive Hebbian learning forms functional recurrent networks. Proc. Natl. Acad. Sci. U. S. A., 121(25): e2305326121. doi:10.1073/pnas.2305326121.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://pubmed.ncbi.nlm.nih.gov/38870059/ (beliebiger Volltext)
Beschreibung:
-
OA-Status:
Gold

Urheber

einblenden:
ausblenden:
 Urheber:
Eckmann, Samuel1, 2, Autor
Young, Edward James2, Autor
Gjorgjieva, Julijana1, 3, Autor           
Affiliations:
1Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Max Planck Society, ou_2461694              
2Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom., ou_persistent22              
3School of Life Sciences, Technical University Munich, Freising 85354, Germany., ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: excitation–inhibition balance; recurrent networks; surround suppression; synaptic plasticity.
 Zusammenfassung: Cortical networks exhibit complex stimulus-response patterns that are based on specific recurrent interactions between neurons. For example, the balance between excitatory and inhibitory currents has been identified as a central component of cortical computations. However, it remains unclear how the required synaptic connectivity can emerge in developing circuits where synapses between excitatory and inhibitory neurons are simultaneously plastic. Using theory and modeling, we propose that a wide range of cortical response properties can arise from a single plasticity paradigm that acts simultaneously at all excitatory and inhibitory connections-Hebbian learning that is stabilized by the synapse-type-specific competition for a limited supply of synaptic resources. In plastic recurrent circuits, this competition enables the formation and decorrelation of inhibition-balanced receptive fields. Networks develop an assembly structure with stronger synaptic connections between similarly tuned excitatory and inhibitory neurons and exhibit response normalization and orientation-specific center-surround suppression, reflecting the stimulus statistics during training. These results demonstrate how neurons can self-organize into functional networks and suggest an essential role for synapse-type-specific competitive learning in the development of cortical circuits.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2023-04-042024-04-252024-06-13
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1073/pnas.2305326121
PMID: 38870059
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : ERC-2018-STG NeuroDevo Spontaneous and sensory-evoked activity shape neural circuits in the developing brain
Grant ID : 804824
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: Proc. Natl. Acad. Sci. U. S. A.
  Andere : Proceedings of the National Academy of Sciences of the United States of America
  Andere : Proceedings of the National Academy of Sciences of the USA
  Kurztitel : Proc. Natl. Acad. Sci. U. S. A.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : National Academy of Sciences
Seiten: - Band / Heft: 121 (25) Artikelnummer: e2305326121 Start- / Endseite: - Identifikator: ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230