Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Simplicity in Complexity: Explaining Visual Complexity using Deep Segmentation Models

Shen, T., Nath, S., Brielmann, A., & Dayan, P. (2024). Simplicity in Complexity: Explaining Visual Complexity using Deep Segmentation Models. In 46th Annual Conference of the Cognitive Science Society (CogSci 2024) (pp. 2017-2024).

Item is

Basisdaten

einblenden: ausblenden:
Genre: Konferenzbeitrag

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Shen, T1, Autor                 
Nath, S1, Autor                 
Brielmann, AA, Autor                 
Dayan, P1, Autor                 
Affiliations:
1Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3017468              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The complexity of visual stimuli plays an important role in many cognitive phenomena, including attention, engagement, memorability, time perception and aesthetic evaluation. Despite its importance, complexity is poorly understood and ironically, previous models of image complexity have been quite \textit{complex}. There have been many attempts to find handcrafted features that explain complexity, but these features are usually dataset specific, and hence fail to generalise. On the other hand, more recent work has employed deep neural networks to predict complexity, but these models remain difficult to interpret, and do not guide a theoretical understanding of the problem. Here we propose to model complexity using segment-based representations of images. We use state-of-the-art segmentation models, SAM and FC-CLIP, to quantify the number of segments at multiple granularities, and the number of classes in an image respectively. We find that complexity is well-explained by a simple linear model with these two features across six diverse image-sets of naturalistic scene and art images. This suggests that the complexity of images can be surprisingly simple.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2024-07
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: -
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: 46th Annual Conference of the Cognitive Science Society (CogSci 2024)
Veranstaltungsort: Rotterdam, The Netherlands
Start-/Enddatum: 2024-07-24 - 2024-07-27

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: 46th Annual Conference of the Cognitive Science Society (CogSci 2024)
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: 2017 - 2024 Identifikator: -