Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Human-like Category Learning by Injecting Ecological Priors from Large Language Models into Neural Networks

Jagadish, A., Coda-Forno, J., Thalmann, M., Schulz, E., & Binz, M. (2024). Human-like Category Learning by Injecting Ecological Priors from Large Language Models into Neural Networks. In Proceedings of Machine Learning Research: PLMR (pp. 21121-21147).

Item is

Basisdaten

ausblenden:
Genre: Konferenzbeitrag

Externe Referenzen

ausblenden:
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

ausblenden:
 Urheber:
Jagadish, AK1, Autor                 
Coda-Forno, J1, Autor           
Thalmann, M1, Autor                 
Schulz, E1, Autor                 
Binz, M1, Autor                 
Affiliations:
1Research Group Computational Principles of Intelligence, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3189356              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Ecological rationality refers to the notion that humans are rational agents adapted to their environment. However, testing this theory remains challenging due to two reasons: the difficulty in defining what tasks are ecologically valid and building rational models for these tasks. In this work, we demonstrate that large language models can generate cognitive tasks, specifically category learning tasks, that match the statistics of real-world tasks, thereby addressing the first challenge. We tackle the second challenge by deriving rational agents adapted to these tasks using the framework of meta-learning, leading to a class of models called ecologically rational meta-learned inference (ERMI). ERMI quantitatively explains human data better than seven other cognitive models in two different experiments. It additionally matches human behavior on a qualitative level: (1) it finds the same tasks difficult that humans find difficult, (2) it becomes more reliant on an exemplar-based strategy for assigning categories with learning, and (3) it generalizes to unseen stimuli in a human-like way. Furthermore, we show that ERMI's ecologically valid priors allow it to achieve state-of-the-art performance on the OpenML-CC18 classification benchmark.

Details

ausblenden:
Sprache(n):
 Datum: 2024-072024
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: -
 Art des Abschluß: -

Veranstaltung

ausblenden:
Titel: 41st International Conference on Machine Learning (ICML 2024)
Veranstaltungsort: Wien, Austria
Start-/Enddatum: 2024-07-21 - 2024-07-27

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Proceedings of Machine Learning Research: PLMR
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 235 Artikelnummer: - Start- / Endseite: 21121 - 21147 Identifikator: -