Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Quantitative analysis of temporal stability and instrument performance during field experiments of an airborne QCLAS via Allan–Werle-plots

Röder, L. L., Ort, L., Lelieveld, J., & Fischer, H. (2024). Quantitative analysis of temporal stability and instrument performance during field experiments of an airborne QCLAS via Allan–Werle-plots. Applied Physics B: Lasers and Optics, 130: 118. doi:10.1007/s00340-024-08254-5.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:
Hybrid

Urheber

einblenden:
ausblenden:
 Urheber:
Röder, Lenard L.1, Autor           
Ort, Linda1, Autor           
Lelieveld, Jos1, Autor           
Fischer, Horst1, Autor           
Affiliations:
1Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826285              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Allan–Werle-plots are an established tool in infrared absorption spectroscopy to quantify temporal stability, maximum integration time and best achievable precision of a measurement instrument. In field measurements aboard a moving platform, however, long integration times reduce time resolution and smooth atmospheric variability. A high accuracy and time resolution are necessary as well as an appropriate estimate of the measurement uncertainty. In this study, Allan-Werle-plots of calibration gas measurements are studied to analyze the temporal characteristics of a Quantum Cascade Laser Absorption Spectrometer (QCLAS) instrument for airborne operation. Via least-squares fitting the individual noise contributions can be quantified and different dominant regimes can be identified. Through simulation of data according to the characteristics from the Allan-Werle-plot, the effects of selected intervals between in-flight calibrations can be analyzed. An interval of min is found sufficient for successful drift correction during ground operation. The linear interpolation of the sensitivity increases the accuracy and lowers the measurement uncertainty from to . Airborne operation yields similar results during segments of stable flight but suffers from additional flicker and sinusoidal contributions. Simulations verify an appropriate interval of min in airborne operation. The expected airborne measurement uncertainty is 2.45 ppbv.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2024-06-12
 Publikationsstatus: Online veröffentlicht
 Seiten: 9
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1007/s00340-024-08254-5
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Applied Physics B: Lasers and Optics
  Andere : Appl. Phys. B: Lasers O.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Heidelberg : Springer-Verlag
Seiten: - Band / Heft: 130 Artikelnummer: 118 Start- / Endseite: - Identifikator: ISSN: 0946-2171
CoNE: https://pure.mpg.de/cone/journals/resource/954928582870