English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Solvent cavitation during ambient pressure drying of silica aerogels

Gonthier, J., Scoppola, E., Rilling, T., Gurlo, A., Fratzl, P., & Wagermaier, W. (2024). Solvent cavitation during ambient pressure drying of silica aerogels. Langmuir, 40(25), 12925-12938. doi:10.1021/acs.langmuir.4c00497.

Item is

Files

show Files
hide Files
:
Article.pdf (Publisher version), 6MB
Name:
Article.pdf
Description:
-
OA-Status:
Hybrid
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Gonthier, Julien1, Author                 
Scoppola, Ernesto1, Author                 
Rilling , Tilman1, Author
Gurlo, Aleksander, Author
Fratzl, Peter2, Author                 
Wagermaier, Wolfgang1, Author           
Affiliations:
1Wolfgang Wagermaier, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863296              
2Peter Fratzl, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863294              

Content

show
hide
Free keywords: -
 Abstract: Ambient-pressure drying of silica gels stands out as an economical and accessible process for producing monolithic silica aerogels. Gels experience significant deformations during drying due to the capillary pressure generated at the liquid–vapor interface in submicron pores. Proper control of the gel properties and the drying rate is essential to enable reversible drying shrinkage without mechanical failure. Recent in operando microcomputed X-ray tomography (μCT) imaging revealed the kinetics of the phase composition during drying and spring-back. However, to fully explain the underlying mechanisms, spatial resolution is required. Here we show evidence of evaporation by hexane cavitation during the ambient-pressure drying of silylated silica gels by spatially resolved quantitative analysis of μCT data supported by wide-angle X-ray scattering measurements. Cavitation consists of the rupture of the pore liquid put under tension by capillary pressure, creating vapor bubbles within the gels. We found the presence of a homogeneously distributed vapor-air phase in the gels well ahead of the maximum shrinkage. The onset of this vapor/air phase corresponded to a pore volume shrinkage of ca. 50 vol % that was attributed to a critical stiffening of the silica skeleton enabling cavitation. Our results provide new aspects of the relation between the shape changes of silica gels during drying and the evaporation mechanisms. We conclude that stress release by cavitation may be at the origin of the resistance of the silica skeleton to drying stresses. This opens the path toward producing larger monolithic silica aerogels by fine-tuning the drying conditions to exploit cavitation.

Details

show
hide
Language(s): eng - English
 Dates: 2024-06-252024
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1021/acs.langmuir.4c00497
PMID: 0655
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Langmuir
  Abbreviation : Langmuir
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Columbus, OH : American Chemical Society
Pages: - Volume / Issue: 40 (25) Sequence Number: - Start / End Page: 12925 - 12938 Identifier: ISSN: 0743-7463