English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Prenatal MAM exposure raises kynurenic acid levels in the prefrontal cortex of adult rats

Frescura, F., Stark, T., Tiziani, E., Di Martino, S., Ruda-Kucerova, J., Drago, F., et al. (2024). Prenatal MAM exposure raises kynurenic acid levels in the prefrontal cortex of adult rats. PHARMACOLOGICAL REPORTS. doi:10.1007/s43440-024-00604-6.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Frescura, Francesca, Author
Stark, Tibor1, Author           
Tiziani, Edoardo, Author
Di Martino, Serena, Author
Ruda-Kucerova, Jana, Author
Drago, Filippo, Author
Ferraro, Luca, Author
Micale, Vincenzo, Author
Beggiato, Sarah, Author
Affiliations:
1Dept. Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Max Planck Society, ou_2035294              

Content

show
hide
Free keywords: -
 Abstract: Background Elevated brain levels of kynurenic acid (KYNA), a metabolite in the kynurenine pathway, are associated with cognitive dysfunctions, which are nowadays often considered as fundamental characteristics of several psychopathologies; however, the role of KYNA in mental illnesses, such as schizophrenia, is not fully elucidated. This study aimed to assess KYNA levels in the prefrontal cortex (PFC) of rats prenatally treated with methylazoxymethanol (MAM) acetate, i.e., a well-validated neurodevelopmental animal model of schizophrenia. The effects of an early pharmacological modulation of the endogenous cannabinoid system were also evaluated. Methods Pregnant Sprague-Dawley rats were treated with MAM (22 mg/kg, ip) or its vehicle at gestational day 17. Male offspring were treated with the cannabinoid CB1 receptor antagonist/inverse agonist AM251 (0.5 mg/kg/day, ip) or with the typical antipsychotic haloperidol (0.6 mg/kg/day, ip) from postnatal day (PND) 19 to PND39. The locomotor activity and cognitive performance were assessed in the novel object recognition test and the open field test in adulthood. KYNA levels in the PFC of prenatally MAM-treated rats were also assessed. Results A significant cognitive impairment was observed in prenatally MAM-treated rats (p < 0.01), which was associated with enhanced PFC KYNA levels (p < 0.05). The peripubertal AM251, but not haloperidol, treatment ameliorated the cognitive deficit (p < 0.05), by normalizing the PFC KYNA content in MAM rats. Conclusions The present findings suggest that the cognitive deficit observed in MAM rats may be related to enhanced PFC KYNA levels which could be, in turn, mediated by the activation of cannabinoid CB1 receptor. These results further support the modulation of brain KYNA levels as a potential therapeutic strategy to ameliorate the cognitive dysfunctions in schizophrenia.

Details

show
hide
Language(s):
 Dates: 2024
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: PHARMACOLOGICAL REPORTS
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: ISSN: 1734-1140