Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Large-batch, Iteration-efficient Neural Bayesian Design Optimization

Ansari, N., Seidel, H.-P., & Babaei, V. (2023). Large-batch, Iteration-efficient Neural Bayesian Design Optimization. doi:10.48550/arXiv.2306.01095.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Forschungspapier

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2306.01095.pdf (Preprint), 10MB
Name:
2306.01095.pdf
Beschreibung:
File downloaded from arXiv at 2024-06-28 10:56
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Ansari, Navid1, Autor           
Seidel, Hans-Peter1, Autor                 
Babaei, Vahid1, Autor           
Affiliations:
1Computer Graphics, MPI for Informatics, Max Planck Society, ou_40047              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Computer Science, Learning, cs.LG,Computer Science, Artificial Intelligence, cs.AI,Computer Science, Computational Engineering, Finance, and Science, cs.CE
 Zusammenfassung: Bayesian optimization (BO) provides a powerful framework for optimizing
black-box, expensive-to-evaluate functions. It is therefore an attractive tool
for engineering design problems, typically involving multiple objectives.
Thanks to the rapid advances in fabrication and measurement methods as well as
parallel computing infrastructure, querying many design problems can be heavily
parallelized. This class of problems challenges BO with an unprecedented setup
where it has to deal with very large batches, shifting its focus from sample
efficiency to iteration efficiency. We present a novel Bayesian optimization
framework specifically tailored to address these limitations. Our key
contribution is a highly scalable, sample-based acquisition function that
performs a non-dominated sorting of not only the objectives but also their
associated uncertainty. We show that our acquisition function in combination
with different Bayesian neural network surrogates is effective in
data-intensive environments with a minimal number of iterations. We demonstrate
the superiority of our method by comparing it with state-of-the-art
multi-objective optimizations. We perform our evaluation on two real-world
problems -- airfoil design and 3D printing -- showcasing the applicability and
efficiency of our approach. Our code is available at:
https://github.com/an-on-ym-ous/lbn_mobo

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2023-06-012023
 Publikationsstatus: Erschienen
 Seiten: 25 pages
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 2306.01095
DOI: 10.48550/arXiv.2306.01095
URI: https://arxiv.org/abs/2306.01095
BibTex Citekey: Ansari-et-al_2023
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: