English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Roadmap on Data-Centric Materials Science

Bauer, S., Benner, P., Bereau, T., Blum, V., Boley, M., Carbogno, C., et al. (2024). Roadmap on Data-Centric Materials Science. Modelling and Simulation in Materials Science and Engineering, 32(6): 063301. doi:10.1088/1361-651X/ad4d0d.

Item is

Files

show Files
hide Files
:
Bauer_2024_Modelling_Simul._Mater._Sci._Eng._32_063301.pdf (Publisher version), 7MB
Name:
Bauer_2024_Modelling_Simul._Mater._Sci._Eng._32_063301.pdf
Description:
-
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2024
Copyright Info:
The Author(s)

Locators

show

Creators

show
hide
 Creators:
Bauer, Stefan, Author
Benner, Peter, Author
Bereau, Tristan, Author
Blum, Volker, Author
Boley, Mario, Author
Carbogno, Christian, Author
Catlow, C. Richard A., Author
Dehm, Gerhard1, Author           
Eibl, Sebastian, Author
Ernstorfer, Ralph, Author
Fekete, Adam, Author
Foppa, Lucas, Author
Fratzl, Peter, Author
Freysoldt, Christoph2, Author           
Gault, Baptiste3, 4, Author           
Ghiringhelli, Luca M., Author
Giri, Sajal K., Author
Gladyshev, Anton, Author
Goyal, Pawan, Author
Hattrick-Simpers, Jason, Author
Kabalan, Lara, AuthorKarpov, Petr, AuthorKhorrami, Mohammad S., AuthorKoch, Christoph, AuthorKokott, Sebastian, AuthorKosch, Thomas, AuthorKowalec, Igor, AuthorKremer, Kurt, AuthorLeitherer, Andreas, AuthorLi, Yue3, Author           Liebscher, Christian5, Author           Logsdail, Andrew J., AuthorLu, Zhongwei, AuthorLuong, Felix, AuthorMarek, Andreas, AuthorMerz, Florian, AuthorMianroodi, Jaber Rezaei6, Author           Neugebauer, Jörg7, Author           Pei, Zongrui, AuthorPurcell, Thomas, AuthorRaabe, Dierk8, Author           Rampp, Markus, AuthorRossi, Mariana, AuthorRost, Jan-Michael, AuthorSaal, James E., AuthorSaalmann, Ulf, AuthorSasidhar, Kasturi Narasimha8, Author           Saxena, Alaukik7, Author           Sbailo, Luigi, AuthorScheidgen, Markus, AuthorSchloz, Marcel, AuthorSchmidt, Daniel F., AuthorTeshuva, Simon, AuthorTrunschke, Annette, AuthorWei, Ye, AuthorWeikum, Gerhard, AuthorXian, R. Patrick, AuthorYao, Yi, AuthorYin, Junqi, AuthorZhao, Meng, AuthorScheffler, Matthias, Author more..
Affiliations:
1Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863398              
2Defect Chemistry and Spectroscopy, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863342              
3Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863384              
4Imperial College, Royal School of Mines, Department of Materials, London, SW7 2AZ, UK, ou_persistent22              
5Advanced Transmission Electron Microscopy, Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863399              
6Computational Sustainable Metallurgy, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_3243050              
7Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863337              
8Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              

Content

show
hide
Free keywords: Condensed Matter, Materials Science, cond-mat.mtrl-sci, Physics, Data Analysis, Statistics and Probability, physics.data-an
 Abstract: Science is and always has been based on data, but the terms "data-centric" and the "4th paradigm of" materials research indicate a radical change in how information is retrieved, handled and research is performed. It signifies a transformative shift towards managing vast data collections, digital repositories, and innovative data analytics methods. The integration of Artificial Intelligence (AI) and its subset Machine Learning (ML), has become pivotal in addressing all these challenges. This Roadmap on Data-Centric Materials Science explores fundamental concepts and methodologies, illustrating diverse applications in electronic-structure theory, soft matter theory, microstructure research, and experimental techniques like photoemission, atom probe tomography, and electron microscopy. While the roadmap delves into specific areas within the broad interdisciplinary field of materials science, the provided examples elucidate key concepts applicable to a wider range of topics. The discussed instances offer insights into addressing the multifaceted challenges encountered in contemporary materials research.

Details

show
hide
Language(s): eng - English
 Dates: 2024-02-012024-05-172024-07-03
 Publication Status: Issued
 Pages: Review, outlook, roadmap, perspective
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 2402.10932
DOI: 10.1088/1361-651X/ad4d0d
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : NOMAD CoE - Novel materials for urgent energy, environmental and societal challenges
Grant ID : 951786
Funding program : Horizon 2020 (H2020)
Funding organization : European Commission (EC)

Source 1

show
hide
Title: Modelling and Simulation in Materials Science and Engineering
  Abbreviation : Modelling Simul. Mater. Sci. Eng.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : IOP Pub.
Pages: - Volume / Issue: 32 (6) Sequence Number: 063301 Start / End Page: - Identifier: ISSN: 0965-0393
CoNE: https://pure.mpg.de/cone/journals/resource/954925581155