Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Integrated translation and metabolism in a partially self-synthesizing biochemical network

Giaveri, S., Bohra, N., Diehl, C., Yang, H. Y., Ballinger, M., Paczia, N., et al. (2024). Integrated translation and metabolism in a partially self-synthesizing biochemical network. Science, 385(6705), 174-178. doi:10.1126/science.adn3856.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

ausblenden:
externe Referenz:
https://www.science.org/doi/abs/10.1126/science.adn3856 (Verlagsversion)
Beschreibung:
-
OA-Status:
Hybrid

Urheber

ausblenden:
 Urheber:
Giaveri, Simone1, Autor           
Bohra, Nithin1, Autor           
Diehl, Christoph1, Autor           
Yang, Hao Yuan1, Autor
Ballinger, Martine1, Autor           
Paczia, Nicole2, Autor                 
Glatter, Timo3, Autor                 
Erb, Tobias J.1, Autor                 
Affiliations:
1Cellular Operating Systems, Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3266303              
2Core Facility Metabolomics and small Molecules Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3266267              
3Core Facility Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3266266              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: One of the hallmarks of living organisms is their capacity for self-organization and regeneration, which requires a tight integration of metabolic and genetic networks. We sought to construct a linked metabolic and genetic network in vitro that shows such lifelike behavior outside of a cellular context and generates its own building blocks from nonliving matter. We integrated the metabolism of the crotonyl-CoA/ethyl-malonyl-CoA/hydroxybutyryl-CoA cycle with cell-free protein synthesis using recombinant elements. Our network produces the amino acid glycine from CO2 and incorporates it into target proteins following DNA-encoded instructions. By orchestrating ~50 enzymes we established a basic cell-free operating system in which genetically encoded inputs into a metabolic network are programmed to activate feedback loops allowing for self-integration and (partial) self-regeneration of the complete system. All life must transform metabolites through enzyme-catalyzed reactions and transmit the information necessary to produce those enzymes for future generations. Synthetic biology systems are often limited to either a metabolic or genetic focus. Giaveri et al. combined two existing artificial systems, a carbon dioxide–fixing metabolic cycle and an in vitro transcription and translation platform, to create a complex hybrid system that can incorporate carbon dioxide–derived glycine into DNA-encoded protein products. When provided with the appropriate starting conditions, a droplet-confined system can self-regenerate by producing missing enzymes. This integrated metabolic and genetic biosynthetic system may be a useful system in which to study metabolic networks and could serve as a platform for additional metabolic modules. —Michael A. Funk

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2024-07-12
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1126/science.adn3856
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Science
  Kurztitel : Science
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : American Association for the Advancement of Science
Seiten: - Band / Heft: 385 (6705) Artikelnummer: - Start- / Endseite: 174 - 178 Identifikator: ISSN: 0036-8075
CoNE: https://pure.mpg.de/cone/journals/resource/991042748276600_1