hide
Free keywords:
MICRORESONATOR; SOLITON; RESONATOROptics; optical frequency comb (OFC); silica microsphere; whispering gallery
mode resonator (WGMR); dissipative Kerr soliton (DKS);
wavelength-division multiplexing (WDM); non-return-to-zero (NRZ);
passive optical network (PON);
Abstract:
Optical frequency comb (OFC) generators based on whispering gallery mode (WGM) microresonators have a massive potential to ensure spectral and energy efficiency in wavelength-division multiplexing (WDM) telecommunication systems. The use of silica microspheres for telecommunication applications has hardly been studied but could be promising. We propose, investigate, and optimize numerically a simple design of a silica microsphere-based OFC generator in the C-band with a free spectral range of 200 GHz and simulate its implementation to provide 4-channel 200 GHz spaced WDM data transmission system. We calculate microsphere characteristics such as WGM eigenfrequencies, dispersion, nonlinear Kerr coefficient with allowance for thermo-optical effects, and simulate OFC generation in the regime of a stable dissipative Kerr soliton. We show that by employing generated OFC lines as optical carriers for WDM data transmission, it is possible to ensure error-free data transmission with a bit error rate (BER) of 4.5 x 10(-30), providing a total of 40 Gbit/s of transmission speed on four channels.