English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Towards high throughput melting property calculations with ab initio accuracy aided by machine learning potential

Zhu, L.-F., Neugebauer, J., & Grabowski, B. (2023). Towards high throughput melting property calculations with ab initio accuracy aided by machine learning potential. Talk presented at CALPHAD L Conference. Cambridge, MA, USA. 2023-06-25 - 2023-06-30.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Zhu, Li-Fang1, 2, Author           
Neugebauer, Jörg3, Author           
Grabowski, Blazej4, 5, Author           
Affiliations:
1Ab Initio Thermodynamics, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863338              
2Institute of Materials Science, University of Stuttgart, Germany, ou_persistent22              
3Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863337              
4Institute of Materials Science, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, 70569, Germany, ou_persistent22              
5Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863341              

Content

show

Details

show
hide
Language(s): eng - English
 Dates: 2023-06
 Publication Status: Not specified
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: -

Event

show
hide
Title: CALPHAD L Conference
Place of Event: Cambridge, MA, USA
Start-/End Date: 2023-06-25 - 2023-06-30

Legal Case

show

Project information

show

Source

show