Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Image Classification for Historical Documents: A Study on Chinese Local Gazetteers

Chen, J.-A., Hou, J.-C., Tsai, R.-T.-H., Liao, H.-M., Chen, S.-P., & Chang, M.-C. (2024). Image Classification for Historical Documents: A Study on Chinese Local Gazetteers. Digital Scholarship in the Humanities, 39(1), 61-73. doi:10.1093/llc/fqad065.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
fqad065.pdf (beliebiger Volltext), 2MB
Name:
fqad065.pdf
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://academic.oup.com/dsh/article/39/1/61/7450448 (beliebiger Volltext)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Chen, Jhe-An, Autor
Hou, Jen-Chien, Autor
Tsai, Richard Tzong-Han, Autor
Liao, Hsiung-Ming, Autor
Chen, Shih-Pei1, Autor           
Chang, Ming-Ching, Autor
Affiliations:
1Department Artifacts, Action, Knowledge, Max Planck Institute for the History of Science, Max Planck Society, ou_2266697              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 MPIWG_PROJECTS: Local Gazetteers
 Zusammenfassung: We present a novel approach for automatically classifying illustrations from historical Chinese local gazetteers using modern deep learning techniques. Our goal is to facilitate the digital organization and study of a large quantity of digitized local gazetteers. We evaluate the performance of eight state-of-the-art deep neural networks on a dataset of 4,309 manually labeled and organized images of Chinese local gazetteer illustrations, grouped into three coarse categories and nine fine classes according to their contents. Our experiments show that DaViT achieved the highest classification accuracy of 93.9 per cent and F1-score of 90.6 per cent. Our results demonstrate the effectiveness of deep learning models in accurately recognizing and categorizing historical local gazetteer illustrations. We also developed a user-friendly web service to enable researchers easy access to the developed models. The potential for extending this method to other collections of scanned documents beyond Chinese local gazetteers makes a significant contribution to the study of visual materials in the arts and history in the digital humanities field. The dataset used in this study is publicly available and can be used for further research in the field.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2024-11-242024
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1093/llc/fqad065
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Digital Scholarship in the Humanities
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 39 (1) Artikelnummer: - Start- / Endseite: 61 - 73 Identifikator: ISBN: 2055-7671