Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Extensive reference set and refined computational protocol for calculations of 57Fe Mössbauer parameters

Santra, G., Neese, F., & Pantazis, D. A. (2024). Extensive reference set and refined computational protocol for calculations of 57Fe Mössbauer parameters. Physical Chemistry Chemical Physics, 26(35), 23322-23334. doi:10.1039/D4CP00431K.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
supplementary filesd4cp00431k3.pdf (Ergänzendes Material), 2MB
Name:
supplementary filesd4cp00431k3.pdf
Beschreibung:
Supplementary files
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Santra, Golokesh1, Autor           
Neese, Frank2, Autor           
Pantazis, Dimitrios A.1, Autor           
Affiliations:
1Research Group Pantazis, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541711              
2Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541710              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Mössbauer spectroscopy is a powerful technique for probing the local electronic structure of iron compounds, because it reports in an element-selective manner on both the oxidation state and coordination environment of the Fe ion. Computational prediction of the two main Mössbauer parameters, isomer shift (δ) and quadrupole splitting (ΔEQ), has long been targeted by quantum chemical studies, and useful protocols based on density functional theory have been proposed. Here we present an extensive curated reference set of Fe compounds that is considerably larger and more diverse than literature precedents. We make a distinction between low-temperature and high-temperature experimental subgroups. This set is employed for optimizing a refined computational protocol utilizing the scalar version of the exact 2-component (X2C) Hamiltonian with the finite nucleus approximation. Attention is devoted to having an accurate and flexible all-electron basis set for Fe. We assess the performance of several DFT methods that cover all representative families and rungs of functionals and find that hybrid functionals with ca. 25–30% exact exchange offer the best accuracy for isomer shifts. The work establishes a refined general protocol of wide applicability that achieves good performance for the prediction of isomer shifts in a wider variety of systems than before, but the limitations of DFT for quadrupole splittings are also highlighted. Finally, comparison of calculated values with high-temperature experimental results shows that the use of an empirical correction factor is required to account for the second-order Doppler shift and to achieve the same quality of correlation as with the low-temperature data.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2024-01-302024-08-232024-09-21
 Publikationsstatus: Erschienen
 Seiten: 13
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1039/D4CP00431K
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Physical Chemistry Chemical Physics
  Kurztitel : Phys. Chem. Chem. Phys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cambridge, England : Royal Society of Chemistry
Seiten: - Band / Heft: 26 (35) Artikelnummer: - Start- / Endseite: 23322 - 23334 Identifikator: ISSN: 1463-9076
CoNE: https://pure.mpg.de/cone/journals/resource/954925272413_1