Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  The eROSITA Final Equatorial-Depth Survey (eFEDS): A machine learning approach to inferring galaxy cluster masses from eROSITA X-ray images

Krippendorf, S., Perez, N. B., Bulbul, E., Kara, M., Seppi, R., Comparat, J., et al. (2024). The eROSITA Final Equatorial-Depth Survey (eFEDS): A machine learning approach to inferring galaxy cluster masses from eROSITA X-ray images. ASTRONOMY & ASTROPHYSICS, 682: A132. doi:10.1051/0004-6361/202346826.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
The eROSITA Final Equatorial-Depth Survey (eFEDS) A machine learning approach to inferring galaxy cluster masses from eROSITA X-ray images.pdf (beliebiger Volltext), 13MB
 
Datei-Permalink:
-
Name:
The eROSITA Final Equatorial-Depth Survey (eFEDS) A machine learning approach to inferring galaxy cluster masses from eROSITA X-ray images.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Krippendorf, Sven, Autor
Perez, Nicolas Baron, Autor
Bulbul, Esra1, Autor           
Kara, Melih, Autor
Seppi, Riccardo1, Autor           
Comparat, Johan1, Autor           
Artis, Emmanuel1, Autor           
Bahar, Yunus Emre, Autor
Garrel, Christian1, Autor           
Ghirardini, Vittorio1, Autor           
Kluge, Matthias2, Autor           
Liu, Ang1, Autor           
Ramos-Ceja, Miriam E., Autor
Sanders, Jeremy1, Autor           
Zhang, Xiaoyuan, Autor
Brueggen, Marcus3, Autor           
Grandis, Sebastian, Autor
Weller, Jochen4, Autor           
Affiliations:
1High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society, ou_159890              
2Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society, ou_159888              
3High Energy Astrophysics, MPI for Astrophysics, Max Planck Society, ou_159881              
4Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society, ou_159895              

Inhalt

ausblenden:
Schlagwörter: RECONSTRUCTION PROJECT; CONSTRAINTS; CALIBRATION; PROFILES; SCATTER; BIASAstronomy & Astrophysics; methods: numerical; galaxies: clusters: intracluster medium; large-scale structure of Universe; X-rays: galaxies; X-rays: galaxies: clusters;
 Zusammenfassung: We have developed a neural network-based pipeline to estimate masses of galaxy clusters with a known redshift directly from photon information in X-rays. Our neural networks were trained using supervised learning on simulations of eROSITA observations, focusing on the Final Equatorial Depth Survey (eFEDS). We used convolutional neural networks that have been modified to include additional information on the cluster, in particular, its redshift. In contrast to existing works, we utilized simulations that include background and point sources to develop a tool that is directly applicable to observational eROSITA data for an extended mass range - from group size halos to massive clusters with masses in between 10(13) M-circle dot < M < 10(15) M-circle dot. Using this method, we are able to provide, for the first time, neural network mass estimations for the observed eFEDS cluster sample from Spectrum-Roentgen-Gamma/eROSITA observations and we find a consistent performance with weak-lensing calibrated masses. In this measurement, we did not use weak-lensing information and we only used previous cluster mass information, which was used to calibrate the cluster properties in the simulations. When compared to the simulated data, we observe a reduced scatter with respect to luminosity and count rate based scaling relations. We also comment on the application for other upcoming eROSITA All-Sky Survey observations.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2024-02-13
 Publikationsstatus: Online veröffentlicht
 Seiten: 9
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 001161915800003
DOI: 10.1051/0004-6361/202346826
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: ASTRONOMY & ASTROPHYSICS
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE : EDP SCIENCES S A
Seiten: - Band / Heft: 682 Artikelnummer: A132 Start- / Endseite: - Identifikator: ISSN: 0004-6361