English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Meta-learning in active inference

Penacchio, O., & Clemente, A. (2024). Meta-learning in active inference. Behavioral and Brain Sciences, 47: e159. doi:10.1017/S0140525X24000074.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Penacchio, Olivier1, Author
Clemente, Ana2, Author                 
Affiliations:
1Computer Science Department, Autonomous University of Barcelona, and School of Psychology and Neuroscience, University of St Andrews, Barcelona, Spain, ou_persistent22              
2Department of Cognitive Neuropsychology, Max Planck Institute for Empirical Aesthetics, Max Planck Society, ou_3351901              

Content

show
hide
Free keywords: -
 Abstract: Binz et al. propose meta-learning as a promising avenue for modelling human cognition. They provide an in-depth reflection on the advantages of meta-learning over other computational models of cognition, including a sound discussion on how their proposal can accommodate neuroscientific insights. We argue that active inference presents similar computational advantages while offering greater mechanistic explanatory power and biological plausibility.

Details

show
hide
Language(s): eng - English
 Dates: 2024-09-23
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1017/S0140525X24000074
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Behavioral and Brain Sciences
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York : Cambridge University Press.
Pages: - Volume / Issue: 47 Sequence Number: e159 Start / End Page: - Identifier: ISSN: 0140-525X
CoNE: https://pure.mpg.de/cone/journals/resource/954925341730