Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Convolutional neural networks can identify brain interactions involved in decoding spatial auditory attention

Mahjoory, K., Bahmer, A., & Henry, M. J. (2024). Convolutional neural networks can identify brain interactions involved in decoding spatial auditory attention. PLOS Computational Biology, 20(8): e1012376. doi:10.1371/journal.pcbi.1012376.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
24-ner-mah-01-convolutional.pdf (Verlagsversion), 2MB
Name:
24-ner-mah-01-convolutional.pdf
Beschreibung:
OA
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
© 2024 Mahjoory et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Mahjoory , Keyvan1, Autor
Bahmer, Andreas2, Autor
Henry, Molly J.1, 3, Autor                 
Affiliations:
1Research Group Neural and Environmental Rhythms, Max Planck Institute for Empirical Aesthetics, Max Planck Society, ou_3177420              
2RheinMain University of Applied Sciences Campus Ruesselsheim, Wiesbaden, Germany, ou_persistent22              
3Department of Psychology, Toronto Metropolitan University, Toronto, Ontario, Canada, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Human listeners have the ability to direct their attention to a single speaker in a multi-talker environment. The neural correlates of selective attention can be decoded from a single trial of electroencephalography (EEG) data. In this study, leveraging the source-reconstructed and anatomically-resolved EEG data as inputs, we sought to employ CNN as an interpretable model to uncover task-specific interactions between brain regions, rather than simply to utilize it as a black box decoder. To this end, our CNN model was specifically designed to learn pairwise interaction representations for 10 cortical regions from five-second inputs. By exclusively utilizing these features for decoding, our model was able to attain a median accuracy of 77.56% for within-participant and 65.14% for cross-participant classification. Through ablation analysis together with dissecting the features of the models and applying cluster analysis, we were able to discern the presence of alpha-band-dominated inter-hemisphere interactions, as well as alpha- and beta-band dominant interactions that were either hemisphere-specific or were characterized by a contrasting pattern between the right and left hemispheres. These interactions were more pronounced in parietal and central regions for within-participant decoding, but in parietal, central, and partly frontal regions for cross-participant decoding. These findings demonstrate that our CNN model can effectively utilize features known to be important in auditory attention tasks and suggest that the application of domain knowledge inspired CNNs on source-reconstructed EEG data can offer a novel computational framework for studying task-relevant brain interactions.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2023-03-232024-07-302024-08-08
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1371/journal.pcbi.1012376
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: PLOS Computational Biology
  Kurztitel : PLOS Comput Biol
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: San Francisco, CA : Public Library of Science
Seiten: - Band / Heft: 20 (8) Artikelnummer: e1012376 Start- / Endseite: - Identifikator: ISSN: 1553-734X
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000017180_1