日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Convolutional neural networks can identify brain interactions involved in decoding spatial auditory attention

Mahjoory, K., Bahmer, A., & Henry, M. J. (2024). Convolutional neural networks can identify brain interactions involved in decoding spatial auditory attention. PLOS Computational Biology, 20(8):. doi:10.1371/journal.pcbi.1012376.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-000F-E8D5-B 版のパーマリンク: https://hdl.handle.net/21.11116/0000-000F-E8D6-A
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
24-ner-mah-01-convolutional.pdf (出版社版), 2MB
ファイルのパーマリンク:
https://hdl.handle.net/21.11116/0000-000F-E8D7-9
ファイル名:
24-ner-mah-01-convolutional.pdf
説明:
OA
OA-Status:
Gold
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
© 2024 Mahjoory et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Mahjoory , Keyvan1, 著者
Bahmer, Andreas2, 著者
Henry, Molly J.1, 3, 著者                 
所属:
1Research Group Neural and Environmental Rhythms, Max Planck Institute for Empirical Aesthetics, Max Planck Society, ou_3177420              
2RheinMain University of Applied Sciences Campus Ruesselsheim, Wiesbaden, Germany, ou_persistent22              
3Department of Psychology, Toronto Metropolitan University, Toronto, Ontario, Canada, ou_persistent22              

内容説明

表示:
非表示:
キーワード: -
 要旨: Human listeners have the ability to direct their attention to a single speaker in a multi-talker environment. The neural correlates of selective attention can be decoded from a single trial of electroencephalography (EEG) data. In this study, leveraging the source-reconstructed and anatomically-resolved EEG data as inputs, we sought to employ CNN as an interpretable model to uncover task-specific interactions between brain regions, rather than simply to utilize it as a black box decoder. To this end, our CNN model was specifically designed to learn pairwise interaction representations for 10 cortical regions from five-second inputs. By exclusively utilizing these features for decoding, our model was able to attain a median accuracy of 77.56% for within-participant and 65.14% for cross-participant classification. Through ablation analysis together with dissecting the features of the models and applying cluster analysis, we were able to discern the presence of alpha-band-dominated inter-hemisphere interactions, as well as alpha- and beta-band dominant interactions that were either hemisphere-specific or were characterized by a contrasting pattern between the right and left hemispheres. These interactions were more pronounced in parietal and central regions for within-participant decoding, but in parietal, central, and partly frontal regions for cross-participant decoding. These findings demonstrate that our CNN model can effectively utilize features known to be important in auditory attention tasks and suggest that the application of domain knowledge inspired CNNs on source-reconstructed EEG data can offer a novel computational framework for studying task-relevant brain interactions.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2023-03-232024-07-302024-08-08
 出版の状態: オンラインで出版済み
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.1371/journal.pcbi.1012376
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: PLOS Computational Biology
  省略形 : PLOS Comput Biol
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: San Francisco, CA : Public Library of Science
ページ: - 巻号: 20 (8) 通巻号: e1012376 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): ISSN: 1553-734X
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000017180_1