ausblenden:
Schlagwörter:
Francisella tularensis, rare-deoxy amino sugars, total synthesis, minimal epitope, glycan-immunology
Zusammenfassung:
Francisella tularensis, a category A bioterrorism agent, causes tularemia in many animal species. F. tularensis subspecies tularensis (type A) and holarctica (type B) are mainly responsible for human tularemia. The high mortality rate of 30-60% caused by F. tularensis subspecies tularensis if left untreated and the aerosol dispersal renders this pathogen a dangerous bioagent. While a live attenuated vaccine strain (LVS) of F. tularensis type B does not provide sufficient protection against all forms of tularemia infections, a significant level of protection against F. tularensis has been observed for both passive and active immunization of mice with isolated O-antigen capsular polysaccharide. Well-defined, synthetic oligosaccharides offer an alternative approach towards the development of glycoconjugate vaccines. To identify diagnostics and therapeutics leads against tularemia, a collection of F. tularensis strain 15 O-antigen capsular polysaccharide epitopes were chemically synthesized. Glycan microarrays containing synthetic glycans were used to analyze the sera of tularemia-infected and non-infected animals and revealed the presence of IgG antibodies against the glycans. Two disaccharide (13 and 18), both bearing a unique formamido moiety, were identified as minimal glycan epitopes for antibody binding. These epitopes are the starting point for the development of diagnostics and therapeutics against tularemia.