Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Application of Artificial Neural Networks in GERDA for the search of neutrinoless double β-decay of 76Ge

Bothe, V. (2024). Application of Artificial Neural Networks in GERDA for the search of neutrinoless double β-decay of 76Ge. PhD Thesis, Ruprecht-Karls-Universität, Heidelberg.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Hochschulschrift

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Thesis_Bothe.pdf (beliebiger Volltext), 17MB
Name:
Thesis_Bothe.pdf
Beschreibung:
-
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Bothe, Vikas1, Autor                 
Hinton, James, Gutachter
Marrodán Undagoitia, Teresa, Gutachter
Affiliations:
1Division Prof. Dr. James A. Hinton, MPI for Nuclear Physics, Max Planck Society, ou_2074298              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The GERmanium Detector Array (GERDA) experiment, located underground at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, is dedicated to the search for neutrinoless double beta decay (0νββ) in 76Ge. Such a discovery would provide evidence that neutrinos are Majorana particles and challenge the Standard Model of particle physics by violating lepton number conservation. This thesis presents the development and application of robust artificial neural network (ANN)-based classification models for pulse shape discrimination (PSD) within the GERDA experiment, specifically tailored for the high-purity germanium (HPGe) detectors of semi-coaxial geometry. The goal is to improve the experimental sensitivity to 0νββ events by suppressing the background in GERDA. The semi-coaxial detectors represent ~49% of total 127.2 kg.yr exposure in GERDA. For each of the semi-coaxial detectors, 1-d CNN-based models were trained for classification tasks to discriminate the surface and gamma-induced backgrounds, which suppress the background index at Qββ by ~65%, achieving a background index of 8.3 × 10-3 cts/(keV. kg. yr 0. 59 × 10−3 cts/(keV. kg. yr) in Phase I and PhaseII, respectively. No signal is observed, and a limit on the half-life of 0νββ decay of 76Ge is set at T1/2 > 1. 8 × 1026 yr at 90% C.L and the sensitivity coincides with the limit.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2024-10-24
 Publikationsstatus: Angenommen
 Seiten: 161
 Ort, Verlag, Ausgabe: Heidelberg : Ruprecht-Karls-Universität
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: -
 Art des Abschluß: Doktorarbeit

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: