Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Collective self-caging of active filaments in virtual confinement

Kurjahn, M., Abbaspour, L., Papenfuß, F., Bittihn, P., Golestanian, R., Mahault, B., et al. (2024). Collective self-caging of active filaments in virtual confinement. Nature Communications, 15: 9122. doi:10.1038/s41467-024-52936-9.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
s41467-024-52936-9.pdf (Verlagsversion), 3MB
Name:
Publisher Version
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Kurjahn, Maximilian1, Autor           
Abbaspour, Leila1, Autor           
Papenfuß, Franziska1, Autor           
Bittihn, Philip2, Autor                 
Golestanian, Ramin2, Autor                 
Mahault, Benoit2, Autor                 
Karpitschka, Stefan1, Autor           
Affiliations:
1Group Fluidics in heterogeneous environments, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2466703              
2Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2570692              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Motility coupled to responsive behavior is essential for many microorganisms to seek and establish appropriate habitats. One of the simplest possible responses, reversing the direction of motion, is believed to enable filamentous cyanobacteria to form stable aggregates or accumulate in suitable light conditions. Here, we demonstrate that filamentous morphology in combination with responding to light gradients by reversals has consequences far beyond simple accumulation: Entangled aggregates form at the boundaries of illuminated regions, harnessing the boundary to establish local order. We explore how the light pattern, in particular its boundary curvature, impacts aggregation. A minimal mechanistic model of active flexible filaments resembles the experimental findings, thereby revealing the emergent and generic character of these structures. This phenomenon may enable elongated microorganisms to generate adaptive colony architectures in limited habitats or guide the assembly of biomimetic fibrous materials.

Motility coupled with responsive behavior is essential for microorganisms to establish suitable habitats, with simple responses like reversing motion enabling them to form stable aggregates. Kurjahn et al. show that filamentous cyanobacteria use light gradients and boundary curvature of light stimuli to form ordered, entangled aggregates, revealing how these dynamics could influence adaptive colony architectures.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2024-10-23
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/s41467-024-52936-9
BibTex Citekey: Kurjahn2024
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

ausblenden:
Projektname : --
Grant ID : -
Förderprogramm : -
Förderorganisation : -

Quelle 1

ausblenden:
Titel: Nature Communications
  Kurztitel : Nat. Commun.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: 10 Band / Heft: 15 Artikelnummer: 9122 Start- / Endseite: - Identifikator: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723