Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Evolution-assisted engineering of E. coli enables growth on formic acid at ambient CO2 via the Serine Threonine Cycle

Wenk, S., Rainaldi, V., Schann, K., He, H., Bouzon, M., Döring, V., et al. (2024). Evolution-assisted engineering of E. coli enables growth on formic acid at ambient CO2 via the Serine Threonine Cycle. Metabolic Engineering. doi:10.1016/j.ymben.2024.10.007.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Wenk, S.1, Autor                 
Rainaldi, V.1, Autor           
Schann, K.1, Autor           
He, Hai2, Autor
Bouzon, Madeleine2, Autor
Döring, Volker2, Autor
Lindner, S. N.1, Autor           
Bar-Even, A.1, Autor                 
Affiliations:
1Systems and Synthetic Metabolism, Max Planck Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society, ou_2035297              
2external, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: C metabolism, Formate assimilation, Synthetic biology, , Circular bio economy
 Zusammenfassung: Atmospheric CO2 poses a major threat to life on Earth by causing global warming and climate change. On the other hand, it can be considered as a resource that is scalable enough to establish a circular carbon economy. Accordingly, technologies to capture and convert CO2 into reduced one-carbon (C1) compounds (e.g. formic acid) are developing and improving fast. Driven by the idea of creating sustainable bioproduction platforms, natural and synthetic C1-utilization pathways are engineered into industrially relevant microbes. The realization of synthetic C1-assimilation cycles in living organisms is a promising but challenging endeavour. Here, we engineer the Serine Threonine Cycle, a synthetic C1-assimilation cycle in Escherichia coli to achieve growth on formic acid. Our stepwise engineering approach in tailored selection strains combined with adaptive laboratory evolution experiments enabled formatotrophic growth of the organism. Whole genome sequencing and reverse engineering allowed us to determine the key mutations linked to pathway activity. The Serine Threonine Cycle strains created in this work use formic acid as a carbon and energy source and can grow at ambient CO2 cultivation conditions. This work sets an example for the engineering of complex C1-assimilation cycles in heterotrophic microbes.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2024-10-242024
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.ymben.2024.10.007
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Metabolic Engineering
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Brugge, Belgium : Academic Press
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: ISSN: 1096-7176
CoNE: https://pure.mpg.de/cone/journals/resource/954922651200