Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Getting Aligned on Representational Alignment

Sucholutsky, I., Muttenthaler, L., Weller, A., Peng, A., Bobu, A., Kim, B., et al. (2023). Getting Aligned on Representational Alignment. doi:10.48550/arXiv.2310.13018.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Forschungspapier

Dateien

einblenden: Dateien
ausblenden: Dateien
:
arXiv:2310.13018.pdf (Preprint), 13MB
Name:
arXiv:2310.13018.pdf
Beschreibung:
File downloaded from arXiv at 2024-11-26 10:02
OA-Status:
Grün
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Sucholutsky, Ilia1, Autor
Muttenthaler, Lukas1, Autor
Weller, Adrian1, Autor
Peng, Andi1, Autor
Bobu, Andreea1, Autor
Kim, Been1, Autor
Love, Bradley C.1, Autor
Grant, Erin1, Autor
Groen, Iris1, Autor
Achterberg, Jascha1, Autor
Tenenbaum, Joshua B.1, Autor
Collins, Katherine M.1, Autor
Hermann, Katherine L.1, Autor
Oktar, Kerem1, Autor
Greff, Klaus1, Autor
Hebart, Martin N.2, Autor                 
Jacoby, Nori3, Autor                 
Zhang, Qiuyi1, Autor
Marjieh, Raja1, Autor
Geirhos, Robert1, Autor
Chen, Sherol1, AutorKornblith, Simon1, AutorRane, Sunayana1, AutorKonkle, Talia1, AutorO'Connell, Thomas P.1, AutorUnterthiner, Thomas1, AutorLampinen, Andrew K.1, AutorMüller, Klaus-Robert1, AutorToneva, Mariya4, Autor           Griffiths, Thomas L.1, Autor mehr..
Affiliations:
1External Organizations, ou_persistent22              
2Max Planck Research Group Vision and Computational Cognition, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_3158378              
3Research Group Computational Auditory Perception, Max Planck Institute for Empirical Aesthetics, Max Planck Society, ou_3024247              
4Group M. Toneva, Max Planck Institute for Software Systems, Max Planck Society, ou_3444531              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Quantitative Biology, Neurons and Cognition, q-bio.NC,Computer Science, Artificial Intelligence, cs.AI,Computer Science, Learning, cs.LG,Computer Science, Neural and Evolutionary Computing, cs.NE
 Zusammenfassung: Biological and artificial information processing systems form representations
that they can use to categorize, reason, plan, navigate, and make decisions.
How can we measure the extent to which the representations formed by these
diverse systems agree? Do similarities in representations then translate into
similar behavior? How can a system's representations be modified to better
match those of another system? These questions pertaining to the study of
representational alignment are at the heart of some of the most active research
areas in cognitive science, neuroscience, and machine learning. For example,
cognitive scientists measure the representational alignment of multiple
individuals to identify shared cognitive priors, neuroscientists align fMRI
responses from multiple individuals into a shared representational space for
group-level analyses, and ML researchers distill knowledge from teacher models
into student models by increasing their alignment. Unfortunately, there is
limited knowledge transfer between research communities interested in
representational alignment, so progress in one field often ends up being
rediscovered independently in another. Thus, greater cross-field communication
would be advantageous. To improve communication between these fields, we
propose a unifying framework that can serve as a common language between
researchers studying representational alignment. We survey the literature from
all three fields and demonstrate how prior work fits into this framework.
Finally, we lay out open problems in representational alignment where progress
can benefit all three of these fields. We hope that our work can catalyze
cross-disciplinary collaboration and accelerate progress for all communities
studying and developing information processing systems. We note that this is a
working paper and encourage readers to reach out with their suggestions for
future revisions.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2023-10-182023-11-022023-10-182023
 Publikationsstatus: Erschienen
 Seiten: 47 p.
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 2310.13018
DOI: 10.48550/arXiv.2310.13018
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: