Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  AlphaPept: a modern and open framework for MS-based proteomics

Strauss, M. T., Bludau, I., Zeng, W.-F., Voytik, E., Ammar, C., Schessner, J. P., et al. (2024). AlphaPept: a modern and open framework for MS-based proteomics. Nature Communications, 15: 2168. doi:10.1038/s41467-024-46485-4.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Strauss, Maximilian T.1, Autor           
Bludau, Isabell1, Autor           
Zeng, Wen-Feng1, Autor           
Voytik, Eugenia1, Autor           
Ammar, Constantin1, Autor           
Schessner, Julia P.1, 2, Autor           
Ilango, Rajesh, Autor
Gill, Michelle, Autor
Meier, Florian1, Autor           
Willems, Sander1, Autor           
Mann, Matthias1, Autor           
Affiliations:
1Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565159              
2IMPRS-ML: Martinsried, Max Planck Institute of Biochemistry, Max Planck Society, Am Klopferspitz 18, 82152 Martinsried, DE, ou_3531125              

Inhalt

ausblenden:
Schlagwörter: Science & Technology - Other Topics;
 Zusammenfassung: In common with other omics technologies, mass spectrometry (MS)-based proteomics produces ever-increasing amounts of raw data, making efficient analysis a principal challenge. A plethora of different computational tools can process the MS data to derive peptide and protein identification and quantification. However, during the last years there has been dramatic progress in computer science, including collaboration tools that have transformed research and industry. To leverage these advances, we develop AlphaPept, a Python-based open-source framework for efficient processing of large high-resolution MS data sets. Numba for just-in-time compilation on CPU and GPU achieves hundred-fold speed improvements. AlphaPept uses the Python scientific stack of highly optimized packages, reducing the code base to domain-specific tasks while accessing the latest advances. We provide an easy on-ramp for community contributions through the concept of literate programming, implemented in Jupyter Notebooks. Large datasets can rapidly be processed as shown by the analysis of hundreds of proteomes in minutes per file, many-fold faster than acquisition. AlphaPept can be used to build automated processing pipelines with web-serving functionality and compatibility with downstream analysis tools. It provides easy access via one-click installation, a modular Python library for advanced users, and via an open GitHub repository for developers.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2024-03-09
 Publikationsstatus: Erschienen
 Seiten: 16
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 001328105700001
DOI: 10.1038/s41467-024-46485-4
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Nature Communications
  Kurztitel : Nat. Commun.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: - Band / Heft: 15 Artikelnummer: 2168 Start- / Endseite: - Identifikator: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723