Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  A deep learning approach for automated scoring of the Rey–Osterrieth complex figure

Langer, N., Weber, M., Hebling Vieira, B., Strzelczyk, D., Wolf, L., Pedroni, A., et al. (2024). A deep learning approach for automated scoring of the Rey–Osterrieth complex figure. eLife, 13: RP9601. doi:10.7554/eLife.96017.3.sa0.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Urheber

einblenden:
ausblenden:
 Urheber:
Langer, N, Autor
Weber, M, Autor
Hebling Vieira, B, Autor
Strzelczyk, D, Autor
Wolf, L, Autor
Pedroni, A, Autor
Heitz, J, Autor
Müller, S, Autor
Schultheiss, C, Autor
Troendle, M, Autor
Arango Lasprilla, JC, Autor
Rivera, D, Autor
Scarpina, F, Autor
Zhao, Q, Autor
Leuthold, R, Autor
Wehrle, F, Autor
Jenni, O, Autor
Brugger, P, Autor
Zaehle, T, Autor
Lorenz, R1, Autor                 
Zhang, C, Autor mehr..
Affiliations:
1Research Group Cognitive Neuroscience & Neurotechnology, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3531517              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Memory deficits are a hallmark of many different neurological and psychiatric conditions. The Rey–Osterrieth complex figure (ROCF) is the state-of-the-art assessment tool for neuropsychologists across the globe to assess the degree of non-verbal visual memory deterioration. To obtain a score, a trained clinician inspects a patient’s ROCF drawing and quantifies deviations from the original figure. This manual procedure is time-consuming, slow and scores vary depending on the clinician’s experience, motivation, and tiredness. Here, we leverage novel deep learning architectures to automatize the rating of memory deficits. For this, we collected more than 20k hand-drawn ROCF drawings from patients with various neurological and psychiatric disorders as well as healthy participants. Unbiased ground truth ROCF scores were obtained from crowdsourced human intelligence. This dataset was used to train and evaluate a multihead convolutional neural network. The model performs highly unbiased as it yielded predictions very close to the ground truth and the error was similarly distributed around zero. The neural network outperforms both online raters and clinicians. The scoring system can reliably identify and accurately score individual figure elements in previously unseen ROCF drawings, which facilitates explainability of the AI-scoring system. To ensure generalizability and clinical utility, the model performance was successfully replicated in a large independent prospective validation study that was pre-registered prior to data collection. Our AI-powered scoring system provides healthcare institutions worldwide with a digital tool to assess objectively, reliably, and time-efficiently the performance in the ROCF test from hand-drawn images.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2024-11
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.7554/eLife.96017.3.sa0
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: eLife
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cambridge : eLife Sciences Publications
Seiten: 17 Band / Heft: 13 Artikelnummer: RP9601 Start- / Endseite: - Identifikator: Anderer: URL
ISSN: 2050-084X
CoNE: https://pure.mpg.de/cone/journals/resource/2050-084X