Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  SHOGUN: A Large Scale Machine Learning Toolbox

Sonnenburg, S., Rätsch, G., & De Bona, F. (2006). SHOGUN: A Large Scale Machine Learning Toolbox. In 2nd International R User Conference: useR! 2006 (pp. 155).

Item is

Basisdaten

ausblenden:
Genre: Meeting Abstract

Externe Referenzen

ausblenden:
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

ausblenden:
 Urheber:
Sonnenburg, S, Autor           
Rätsch, G1, Autor                 
De Bona, F1, Autor           
Affiliations:
1Rätsch Group, Friedrich Miescher Laboratory, Max Planck Society, ou_3378052              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: We have developed an R Interface for our Machine Learning Toolbox SHOGUN. It features algo- rithms to train hidden markov models and learn regression and 2-class classification problems. While the toolbox’s focus is on kernel methods such as Support Vector Machines, it also im- plements a number of linear methods like Linear Discriminant Analysis, Linear Programming Machines and Perceptrons. It provides a generic SVM object interfacing to seven different SVM implementations, among them the state of the art LibSVM[1] and SVMlight[2]. Each of these can be combined with a variety of kernels. The toolbox not only provides efficient implementations of the most common kernels, like the Linear, Polynomial, Gaussian and Sigmoid Kernel but also comes with a number of recent string kernels as e.g. the Spectrum or Weighted Degree Kernel (with shifts). For the latter the efficient linadd[4] optimizations are implemented. Also SHOGUN offers the freedom of working with custom pre-computed kernels. One of its key features is the “combined kernel” which can be constructed by a weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain. An optimal sub-kernel weighting can be learned using Multiple Kernel Learning.[3] The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of “preprocessors” (e.g. substracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. SHOGUN also supports MatlabTM, Octave and Python-numarray. The Source Code is freely available for academic non commercial use under http://www.fml.mpg.de/raetsch/shogun.

Details

ausblenden:
Sprache(n):
 Datum: 2006-06
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: -
 Art des Abschluß: -

Veranstaltung

ausblenden:
Titel: 2nd International R User Conference: useR! 2006
Veranstaltungsort: Wien, Austria
Start-/Enddatum: 2006-06-15 - 2006-06-17

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: 2nd International R User Conference: useR! 2006
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: 155 Identifikator: -