Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Positional Oligomer Importance Matrices

Sonnenburg, S., Zien, A., Philips, P., & Rätsch, G. (2007). Positional Oligomer Importance Matrices. Talk presented at NIPS 2007 Workshop on Machine Learning in Computational Biology (MLCB 2007). Whistler, BC, Canada. 2007-12-07 - 2007-12-08.

Item is

Externe Referenzen

ausblenden:
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

ausblenden:
 Urheber:
Sonnenburg, S, Autor           
Zien, A1, Autor           
Philips, P1, Autor           
Rätsch, G1, Autor           
Affiliations:
1Rätsch Group, Friedrich Miescher Laboratory, Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, DE, ou_3378052              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: At the heart of many important bioinformatics problems, such as gene finding and function prediction, is the classification of biological sequences, above all of DNA and proteins. In many cases, the most accurate classifiers are obtained by training SVMs with complex sequence kernels, for instance for transcription starts or splice sites. However, an often criticized downside of SVMs with complex kernels is that it is very hard for humans to understand the learned decision rules and to derive biological insights from them. To close this gap, we introduce the concept of positional oligomer importance matrices (POIMs) and develop an efficient algorithm for their computation. We demonstrate how they overcome the limitations of sequence logos, and how they can be used to find relevant motifs for different biological phenomena in a straight-forward way. Note that the concept of POIMs is not limited to interpreting SVMs, but is applicable to general k8722;mer based scoring systems.

Details

ausblenden:
Sprache(n):
 Datum: 2007-12
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: BibTex Citekey: 5033
 Art des Abschluß: -

Veranstaltung

ausblenden:
Titel: NIPS 2007 Workshop on Machine Learning in Computational Biology (MLCB 2007)
Veranstaltungsort: Whistler, BC, Canada
Start-/Enddatum: 2007-12-07 - 2007-12-08
Eingeladen: Ja

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: