Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Effects of electric field direction on TMS-based motor cortex mapping

Jing, Y., Numssen, O., Hartwigsen, G., Knösche, T. R., & Weise, K. (2024). Effects of electric field direction on TMS-based motor cortex mapping. bioRxiv. doi:10.1101/2024.12.10.627753.

Item is

Externe Referenzen

ausblenden:
Beschreibung:
-
OA-Status:
Grün

Urheber

ausblenden:
 Urheber:
Jing, Ying1, Autor           
Numssen, Ole2, Autor                 
Hartwigsen, Gesa2, Autor                 
Knösche, Thomas R.1, Autor                 
Weise, Konstantin1, Autor                 
Affiliations:
1Methods and Development Group Brain Networks, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_2205650              
2Lise Meitner Research Group Cognition and Plasticity, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_3025665              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Background: Transcranial magnetic stimulation (TMS) modulates brain activity by inducing electric fields (E-fields) that can elicit action potentials in cortical neurons. Neuronal responses to TMS depend not only on the magnitude of the induced E-field but also on various physiological factors. In this study, we incorporated a novel average response model that efficiently estimates the firing threshold of neurons based on their orientation relative to the applied E-field, thereby advancing TMS mapping for motor function. Methods: We conducted a regression-based TMS mapping experiment with fourteen subjects to localize cortical origins of motor evoked potential (MEP) on the first dorsal interosseous (FDI) muscle. Firing thresholds were estimated for excitatory neurons in cortical layers 2/3 and 5 via an average response model. Regression was performed between MEPs and three E-field quantities: the magnitude (magnitude model), the normal component (cosine model), and the effective E-field, which scales the E-field magnitude based on the firing thresholds specific to the neuronal orientation (neuron model). To validate, we applied TMS to ten subjects with optimized coil placements based on these three models to determine which model could yield the highest MEPs. Results: The magnitude and neuron models performed similarly, while the cosine model showed lower explained variance in regression results, required more TMS trials for stable mapping, and yielded the lowest MEP in the validation. Conclusion: This study is the first to advance TMS modeling by incorporating neuron-specific factors at the individual level. Results show that on the motor cortex, the magnitude model is, as expected, a good approximation of cortical TMS effects as it shows similar results as the neuron model. In contrast, the classic cosine model exhibited lower performance and required more TMS trials for stable results, and is not recommended for future studies.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2024-12-16
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1101/2024.12.10.627753
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: bioRxiv
Genre der Quelle: Webseite
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: -