English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  A trimetallic bismuth(I)-based allyl cation

Spinnato, D., Nöthling, N., Leutzsch, M., van Gastel, M., Wagner, L., Neese, F., et al. (2025). A trimetallic bismuth(I)-based allyl cation. Nature Chemistry. doi:10.1038/s41557-024-01691-x.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Spinnato, Davide1, Author           
Nöthling, Nils2, Author           
Leutzsch, Markus3, Author           
van Gastel, Maurice4, Author           
Wagner, Lucas1, Author           
Neese, Frank5, Author           
Cornella, Josep1, Author           
Affiliations:
1Research Group Cornellà, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2466693              
2Service Department Lehmann (EMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445625              
3Service Department Farès (NMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445623              
4Research Group van Gastel, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541713              
5Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541710              

Content

show
hide
Free keywords: -
 Abstract: The chemistry of low-valent bismuth compounds has recently unlocked new concepts in catalysis and unique electronic structure fundamentals. In this work, we describe the synthesis and characterization of a highly reduced bismuth salt featuring a cationic core based on three contiguous Bi(I) centres. The triatomic bismuth-based core exhibits an electronic configuration that mimics the canonical description of the archetypical carbon-based π-allyl cation. Structural, spectroscopic and theoretical analyses validate the unique π-delocalization between the bismuth’s highly diffused 6p orbitals, resulting in a bonding situation in which the three bismuth atoms are interconnected by two bonds, formally possessing a 1.5 bond order each. This electronic situation defines this complex as the heaviest and stable π-allyl cation of the periodic table. Furthermore, we demonstrate that the newly synthesized complex is able to act as a synthon for the transfer of a Bi(I) cation to forge other low-valent organobismuth complexes.

Details

show
hide
Language(s): eng - English
 Dates: 2024-03-132025-01-06
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1038/s41557-024-01691-x
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Chemistry
  Abbreviation : Nat. Chem.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London, UK : Nature Publishing Group
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: ISSN: 1755-4330
CoNE: https://pure.mpg.de/cone/journals/resource/1755-4330