ausblenden:
Schlagwörter:
-
Zusammenfassung:
This thesis focuses on two compounds Mn1.4Pt0.9Pd0.1Sn and PtMnGa that host anti-skyrmions and Néel skyrmions, respectively. For the Mn1.4Pt0.9Pd0.1Sn, the stabilization and thickness dependence of anti-skyrmions is studied using Lorentz Transmission Electron Microscopy (LTEM). The temperature-magnetic field phase diagram revealed that the anti-skyrmion stability window varies little with thickness. This thickness independence stability is attributed to the Dzyaloshinskii-Moriya interaction resulting from the D2d symmetry of the crystal structure. For the compound PtMnGa, observations revealed that its crystal structure is non-centrosymmetric (C3v) and, thus, can host Néel skyrmions, which is discovered using the LTEM measurements. The thickness dependence of the skyrmion size is also investigated. Finally, it is shown that skyrmions in this compound are robust against in-plane magnetic fields of up to 1 T.