日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  STIGMA: Single-cell tissue-specific gene prioritization using machine learning

Balachandran, S., Prada-Medina, C. A., Mensah, M. A., Glaser, J., Kakar, N., Nagel, I., Pozojevic, J., Audain, E., Hitz, M.-P., Kircher, M., Sreenivasan, V. K., & Spielmann, M. (2024). STIGMA: Single-cell tissue-specific gene prioritization using machine learning. The American Journal of Human Genetics, 111, 338-349. doi:10.1016/j.ajhg.2023.12.011.

Item is

基本情報

非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0010-B3DB-D 版のパーマリンク: https://hdl.handle.net/21.11116/0000-0010-B3DC-C
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

作成者

非表示:
 作成者:
Balachandran, Saranya1, 著者
Prada-Medina, Cesar A.1, 著者
Mensah, Martin A.1, 著者
Glaser, Juliane2, 著者                 
Kakar, Naseebullah1, 著者
Nagel, Inga1, 著者
Pozojevic, Jelena1, 著者
Audain, Enrique1, 著者
Hitz, Marc-Phillip1, 著者
Kircher, Martin1, 著者
Sreenivasan, Varun K.A.1, 著者
Spielmann, Malte1, 著者
所属:
1External Organizations, ou_persistent22              
2Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1433557              

内容説明

非表示:
キーワード: gene prioritzation, single-cell sequencing, congenital limb malformations, congenital heart disease, pseudotime, gene expression, congenital diseases.
 要旨: Clinical exome and genome sequencing have revolutionized the understanding of human disease genetics. Yet many genes remain functionally uncharacterized, complicating the establishment of causal disease links for genetic variants. While several scoring methods have been devised to prioritize these candidate genes, these methods fall short of capturing the expression heterogeneity across cell subpopulations within tissues. Here, we introduce single-cell tissue-specific gene prioritization using machine learning (STIGMA), an approach that leverages single-cell RNA-seq (scRNA-seq) data to prioritize candidate genes associated with rare congenital diseases. STIGMA prioritizes genes by learning the temporal dynamics of gene expression across cell types during healthy organogenesis. To assess the efficacy of our framework, we applied STIGMA to mouse limb and human fetal heart scRNA-seq datasets. In a cohort of individuals with congenital limb malformation, STIGMA prioritized 469 variants in 345 genes, with UBA2 as a notable example. For congenital heart defects, we detected 34 genes harboring nonsynonymous de novo variants (nsDNVs) in two or more individuals from a set of 7,958 individuals, including the ortholog of Prdm1, which is associated with hypoplastic left ventricle and hypoplastic aortic arch. Overall, our findings demonstrate that STIGMA effectively prioritizes tissue-specific candidate genes by utilizing single-cell transcriptome data. The ability to capture the heterogeneity of gene expression across cell populations makes STIGMA a powerful tool for the discovery of disease-associated genes and facilitates the identification of causal variants underlying human genetic disorders.

資料詳細

非表示:
言語: eng - English
 日付: 2024-02-01
 出版の状態: オンラインで出版済み
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1016/j.ajhg.2023.12.011
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

非表示:
出版物名: The American Journal of Human Genetics
  その他 : Am. J. Hum. Genet.
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: American Society of Human Genetics
ページ: - 巻号: 111 通巻号: - 開始・終了ページ: 338 - 349 識別子(ISBN, ISSN, DOIなど): ISSN: 0002-9297
CoNE: https://pure.mpg.de/cone/journals/resource/954925377893_1