Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

EndNote (UTF-8)
 
DownloadE-Mail
  On the nature of high-spin forms in the S2 state of the oxygen-evolving complex

Mermigki, M. A., Drosou, M., & Pantazis, D. A. (2025). On the nature of high-spin forms in the S2 state of the oxygen-evolving complex. Chemical Science, 16(9), 4023-4047. doi:10.1039/D4SC07818G.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Mermigki, Markella Aliki1, Autor           
Drosou, Maria1, Autor           
Pantazis, Dimitrios A.1, Autor           
Affiliations:
1Research Group Pantazis, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541711              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: The Mn4CaOx cluster of the oxygen-evolving complex (OEC) in photosystem II, the site of biological water oxidation, adopts different forms as it progresses through the catalytic cycle of Si states (i = 0–4) and within each Si state itself. This has been amply documented by spectroscopy, but the structural basis of spectroscopic polymorphism remains debated. The S2 state is extensively studied by magnetic resonance spectroscopies. In addition to the common type of g ≈ 2 multiline EPR signal attributed to a low-spin (S = 1/2) form of the manganese cluster, other signals at lower fields (g ≥ 4) associated with the S2 state arise from higher-spin forms. Resolving the structural identity of the high-spin species is paramount for a microscopic understanding of the catalytic mechanism. Hypotheses explored by theoretical studies implicate valence isomerism, proton tautomerism, or coordination change with respect to the low-spin form. Here we analyze structure–property correlations for multiple formulations employing a common high-level protocol based on multiscale models that combine a converged quantum mechanics region embedded within a large protein region treated semiempirically with an extended tight-binding method (DFT/xTB), surpassing conventional quantum mechanics/molecular mechanics (QM/MM) approaches. Our results provide a comprehensive comparison of magnetic topologies, spin states and energetics in relation to experimental observations. Crucial predictions are made about 14N hyperfine coupling constants and X-ray absorption Mn K-pre-edge features as criteria for discriminating between different models. This study updates our view on a persistent mystery of biological water oxidation, while providing a refined and transferable computational platform for future theoretical studies of the OEC.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2024-11-182025-01-312025-03-07
 Publikationsstatus: Erschienen
 Seiten: 25
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1039/D4SC07818G
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Chemical Science
  Kurztitel : Chem. Sci.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cambridge, UK : Royal Society of Chemistry
Seiten: - Band / Heft: 16 (9) Artikelnummer: - Start- / Endseite: 4023 - 4047 Identifikator: ISSN: 2041-6520
CoNE: https://pure.mpg.de/cone/journals/resource/2041-6520