Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

EndNote (UTF-8)
 
DownloadE-Mail
  Riemann-Liouville fractional Brownian motion with random Hurst exponent

Woszczek, H., Wylomanska, A., & Chechkin, A. (2025). Riemann-Liouville fractional Brownian motion with random Hurst exponent. Chaos, 35(2): 023145. doi:10.1063/5.0243975.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
2410.11546.pdf (Preprint), 638KB
Name:
2410.11546.pdf
Beschreibung:
File downloaded from arXiv at 2025-02-18 13:03
OA-Status:
Grün
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
023145_1_5.0243975.pdf (Verlagsversion), 2MB
 
Datei-Permalink:
-
Name:
023145_1_5.0243975.pdf
Beschreibung:
Archivkopie
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

ausblenden:
externe Referenz:
https://doi.org/10.1063/5.0243975 (Verlagsversion)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

ausblenden:
 Urheber:
Woszczek, Hubert, Autor
Wylomanska, Agnieszka, Autor
Chechkin, Aleksei1, Autor           
Affiliations:
1German-Ukrainian Core of Excellence PLASMA-SPIN Energy, Max Planck Institute of Microstructure Physics, Max Planck Society, ou_3618552              

Inhalt

ausblenden:
Schlagwörter: Mathematics, Probability, math.PR, Condensed Matter, Statistical Mechanics, cond-mat.stat-mech,Mathematical Physics, math-ph,Mathematics, Mathematical Physics, math.MP
 Zusammenfassung: We examine two stochastic processes with random parameters, which in their basic versions (i.e., when the parameters are fixed) are Gaussian and display long range dependence and anomalous diffusion behavior, characterized by the Hurst exponent. Our motivation comes from biological experiments, which show that the basic models are inadequate for accurate description of the data, leading to modifications of these models in the literature through introduction of the random parameters. The first process, fractional Brownian motion with random Hurst exponent (referred to as FBMRE below) has been recently studied, while the second one, Riemann-Liouville fractional Brownian motion with random exponent (RL FBMRE) has not been explored. To advance the theory of such doubly stochastic anomalous diffusion models, we investigate the probabilistic properties of RL FBMRE and compare them to those of FBMRE. Our main focus is on the autocovariance function and the time-averaged mean squared displacement (TAMSD) of the processes. Furthermore, we analyze the second moment of the increment processes for both models, as well as their ergodicity properties. As a specific case, we consider the mixture of two point distributions of the Hurst exponent, emphasizing key differences in the characteristics of RL FBMRE and FBMRE, particularly in their asymptotic behavior. The theoretical findings presented here lay the groundwork for developing new methods to distinguish these processes and estimate their parameters from experimental data.

Details

ausblenden:
Sprache(n):
 Datum: 2024-10-152025-02-182025-02
 Publikationsstatus: Erschienen
 Seiten: 18 pages, 4 figures
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 2410.11546
DOI: 10.1063/5.0243975
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Chaos
  Andere : Chaos : an interdisciplinary journal of nonlinear science
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, NY : American Institute of Physics
Seiten: - Band / Heft: 35 (2) Artikelnummer: 023145 Start- / Endseite: - Identifikator: ISSN: 1054-1500
CoNE: https://pure.mpg.de/cone/journals/resource/954922836228