hide
Free keywords:
-
Abstract:
In this thesis, is shown a novel chemical templating technique where bulk like magnetic properties in tetragonally distorted Heusler films can be achieved. This is done by growing the Heusler films on atomically ordered CoAl, CoGa, CoGe, CoSn, underlayers that template chemical ordering within the Heusler films, even at room temperature. The Mn3Z family of Heusler alloys is mainly investigated, Z=Ge, Sn, Sb, displaying excellent perpendicular magnetic anisotropy. The current driven domain wall motion direction in nanowire Racetracks from these films is determined by the bulk spin polarization of the Heusler. Moreover, a significant contribution from chiral spin orbit torques is revealed when studied applying in-plane magnetic fields. A bulk in origin Dzyaloshinskii-Moriya interaction and a spin Hall effect from the chemical templating layers are identified. These results are the first demonstration of domain wall motion in ultra-thin Heusler alloys and this work is an important step to enable Heusler spintronic applications.