hide
Free keywords:
-
Abstract:
Weyl semimetals have attracted considerable research interest over the past decade, with a number of intriguing transport phenomena reported. Magnetic Weyl semimetals, which break time reversal symmetry, have been predicted and recently discovered. Co3Sn2S2 is a magnetic Weyl semimetal that exhibit a giant anomalous Hall effect (AHE) when the magnetic moments are aligned along the c axis. In this paper, we report the evolution of the AHE with an external magnetic field applied in the ab plane and current along the c axis, namely, the out-of-plane AHE of Co3Sn2S2. Density functional theory calculations predict a finite out-of-plane AHE when the spins are fully aligned in the ab plane. The evolution of the magnetic structure modifies the nodal line distribution and the Berry curvature, resulting in a weaker AHE with an amplitude of 200 S cm-1 at the saturation field. To ensure the alignment of the magnetic field in the ab plane, a two-round scanning process was performed experimentally. After this, the out-of-plane AHE was measured at multiple temperatures. The observed AHE signals with applied fields of 1 and 2 T were in good agreement with theoretical predictions. These results suggest that engineering the anomalous Hall effect may be possible by designing the symmetry relation of the local Berry curvature.