Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  PICNIC accurately predicts condensate-forming proteins regardless of their structural disorder across organisms.

Hadarovich, A., Singh, H. R., Ghosh, S., Scheremetjew, M., Rostam, N., Hyman, A., et al. (2024). PICNIC accurately predicts condensate-forming proteins regardless of their structural disorder across organisms. Nature communications, 15(1): 10668. doi:10.1038/s41467-024-55089-x.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Hadarovich, Anna, Autor
Singh, Hari Raj, Autor
Ghosh, Soumyadeep, Autor
Scheremetjew, Maxim, Autor
Rostam, Nadia, Autor
Hyman, Anthony1, Autor           
Toth-Petroczy, Agnes1, Autor           
Affiliations:
1Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society, ou_2340692              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Biomolecular condensates are membraneless organelles that can concentrate hundreds of different proteins in cells to operate essential biological functions. However, accurate identification of their components remains challenging and biased towards proteins with high structural disorder content with focus on self-phase separating (driver) proteins. Here, we present a machine learning algorithm, PICNIC (Proteins Involved in CoNdensates In Cells) to classify proteins that localize to biomolecular condensates regardless of their role in condensate formation. PICNIC successfully predicts condensate members by learning amino acid patterns in the protein sequence and structure in addition to the intrinsic disorder. Extensive experimental validation of 24 positive predictions in cellulo shows an overall ~82% accuracy regardless of the structural disorder content of the tested proteins. While increasing disorder content is associated with organismal complexity, our analysis of 26 species reveals no correlation between predicted condensate proteome content and disorder content across organisms. Overall, we present a machine learning classifier to interrogate condensate components at whole-proteome levels across the tree of life.

Details

ausblenden:
Sprache(n):
 Datum: 2024-12-11
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1038/s41467-024-55089-x
Anderer: cbg-8874
PMID: 39663388
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Nature communications
  Andere : Nat Commun
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 15 (1) Artikelnummer: 10668 Start- / Endseite: - Identifikator: -