日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  PICNIC accurately predicts condensate-forming proteins regardless of their structural disorder across organisms.

Hadarovich, A., Singh, H. R., Ghosh, S., Scheremetjew, M., Rostam, N., Hyman, A., & Toth-Petroczy, A. (2024). PICNIC accurately predicts condensate-forming proteins regardless of their structural disorder across organisms. Nature communications, 15(1):. doi:10.1038/s41467-024-55089-x.

Item is

基本情報

非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0010-D571-E 版のパーマリンク: https://hdl.handle.net/21.11116/0000-0010-D572-D
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

非表示:
 作成者:
Hadarovich, Anna, 著者
Singh, Hari Raj, 著者
Ghosh, Soumyadeep, 著者
Scheremetjew, Maxim, 著者
Rostam, Nadia, 著者
Hyman, Anthony1, 著者           
Toth-Petroczy, Agnes1, 著者           
所属:
1Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society, ou_2340692              

内容説明

非表示:
キーワード: -
 要旨: Biomolecular condensates are membraneless organelles that can concentrate hundreds of different proteins in cells to operate essential biological functions. However, accurate identification of their components remains challenging and biased towards proteins with high structural disorder content with focus on self-phase separating (driver) proteins. Here, we present a machine learning algorithm, PICNIC (Proteins Involved in CoNdensates In Cells) to classify proteins that localize to biomolecular condensates regardless of their role in condensate formation. PICNIC successfully predicts condensate members by learning amino acid patterns in the protein sequence and structure in addition to the intrinsic disorder. Extensive experimental validation of 24 positive predictions in cellulo shows an overall ~82% accuracy regardless of the structural disorder content of the tested proteins. While increasing disorder content is associated with organismal complexity, our analysis of 26 species reveals no correlation between predicted condensate proteome content and disorder content across organisms. Overall, we present a machine learning classifier to interrogate condensate components at whole-proteome levels across the tree of life.

資料詳細

非表示:
言語:
 日付: 2024-12-11
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.1038/s41467-024-55089-x
その他: cbg-8874
PMID: 39663388
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

非表示:
出版物名: Nature communications
  その他 : Nat Commun
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 15 (1) 通巻号: 10668 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): -