ausblenden:
Schlagwörter:
Bismuth alloys, Chirality, Fermi surface, Fermi arcs, Localised, Magnetic currents, Model and ab initio calculations, Quantum oscillations, Solid-state system, Theoretical investigations, Topological features, Twin boundaries, Fermions
Zusammenfassung:
One of the most striking signatures of Weyl fermions in solid-state systems is their surface Fermi arcs. Fermi arcs can also be localized at internal twin boundaries where two Weyl materials of opposite chirality meet. In this work, we derive constraints on the topology and connectivity of these "internal Fermi arcs."We show that internal Fermi arcs can exhibit transport signatures, and we propose two probes: quantum oscillations and a quantized chiral magnetic current. We propose merohedrally twinned B20 materials as candidates to host internal Fermi arcs, verified through both model and ab initio calculations. Our theoretical investigation sheds light on the topological features and motivates experimental studies on the intriguing physics of internal Fermi arcs. © 2025 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by "https://www.kb.se/samverkan-och-utveckling/oppen-tillgang-och-bibsamkonsortiet/bibsamkonsortiet.html"Bibsam.