日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
EndNote (UTF-8)
 
ダウンロード電子メール
  Evolutionary and epidemic dynamics of COVID-19 in Germany exemplified by three Bayesian phylodynamic case studies

Översti, S., Weber, A., Baran, V., Kieninger, B., Dilthey, A., Houwaart, T., Walker, A., Schneider-Brachert, W., & Kühnert, D. (2025). Evolutionary and epidemic dynamics of COVID-19 in Germany exemplified by three Bayesian phylodynamic case studies. Bioinformatics and biology insights, 19:. doi:10.1177/11779322251321065.

Item is

基本情報

非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0010-E75A-5 版のパーマリンク: https://hdl.handle.net/21.11116/0000-0010-E75D-2
資料種別: 学術論文

ファイル

非表示: ファイル
:
gea0428.pdf (出版社版), 2MB
ファイルのパーマリンク:
https://hdl.handle.net/21.11116/0000-0010-E75C-3
ファイル名:
gea0428.pdf
説明:
-
OA-Status:
Gold
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-

関連URL

非表示:
説明:
https://creativecommons.org/licenses/by/4.0/. - pdf. - (last seen: March 2025)
OA-Status:
Gold

作成者

非表示:
 作成者:
Översti, Sanni1, 著者                 
Weber, Ariane1, 著者                 
Baran, Viktor, 著者
Kieninger, Bärbel, 著者
Dilthey, Alexander, 著者
Houwaart, Torsten, 著者
Walker, Andreas, 著者
Schneider-Brachert, Wulf, 著者
Kühnert, Denise1, 著者                 
所属:
1Transmission, Infection, Diversification & Evolution Group (tide), Max Planck Institute of Geoanthropology, Max Planck Society, ou_3508663              

内容説明

非表示:
キーワード: Bayesian phylodynamics, birth-death, SARS-CoV-2, reproductive number, viral genomics, BEAST2, Germany
 要旨: The importance of genomic surveillance strategies for pathogens has been particularly evident during the coronavirus disease 2019 (COVID-19) pandemic, as genomic data from the causative agent, severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), have guided public health decisions worldwide. Bayesian phylodynamic inference, integrating epidemiology and evolutionary biology, has become an essential tool in genomic epidemiological surveillance. It enables the estimation of epidemiological parameters, such as the reproductive number, from pathogen sequence data alone. Despite the phylodynamic approach being widely adopted, the abundance of phylodynamic models often makes it challenging to select the appropriate model for specific research questions. This article illustrates the application of phylodynamic birth-death-sampling models in public health using genomic data, with a focus on SARS-CoV-2. Targeting researchers less familiar with phylodynamics, it introduces a comprehensive workflow, including the conceptualisation of a research study and detailed steps for data preprocessing and postprocessing. In addition, we demonstrate the versatility of birth-death-sampling models through three case studies from Germany, utilising the BEAST2 software and its model implementations. Each case study addresses a distinct research question relevant not only to SARS-CoV-2 but also to other pathogens: Case study 1 finds traces of a superspreading event at the start of an early outbreak, exemplifying how simple models for genomic data can provide information that would otherwise only be accessible through extensive contact tracing. Case study 2 compares transmission dynamics in a nosocomial outbreak to community transmission, highlighting distinct dynamics through integrative analysis. Case study 3 investigates whether local transmission patterns align with national trends, demonstrating how phylodynamic models can disentangle complex population substructure with little additional information. For each case study, we emphasise critical points where model assumptions and data properties may misalign and outline appropriate validation assessments. Overall, we aim to provide researchers with examples on using birth-death-sampling models in genomic epidemiology, balancing theoretical and practical aspects.

資料詳細

非表示:
言語: eng - English
 日付: 2024-07-082024-01-292025-03-122025-01
 出版の状態: 出版
 ページ: 17
 出版情報: -
 目次: Introduction
Methods
General workflow – Conceptualisation
General workflow – Data analysis
Results
Case study 1 – Superspreading during carnival
Case study 2 – Hospital outbreak
Case study 3 – Spatiotemporal pandemic excerpt
Discussion
Conclusions
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1177/11779322251321065
その他: gea0428
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

非表示:
出版物名: Bioinformatics and biology insights
  省略形 : Bioinformatics biol. insights.
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: Thousand Oaks, CA : Sage Publications
ページ: - 巻号: 19 通巻号: 11779322251321065 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): ISSN: 1177-9322
CoNE: https://pure.mpg.de/cone/journals/resource/1177-9322