Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Interface-Tailored Secondary Excitation and Ultrafast Charge/Energy Transfer in Ti3C2Tx-MoS2 Heterostructure Films

Zhang, J., Muñoz-Mármol, R., Fu, S., Li, X., Zheng, W., Villa, A., et al. (2025). Interface-Tailored Secondary Excitation and Ultrafast Charge/Energy Transfer in Ti3C2Tx-MoS2 Heterostructure Films. Journal of the American Chemical Society, 147(11), 10012-10022. doi:10.1021/jacs.5c01826.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
zhang-et-al-2025.pdf (Verlagsversion), 9MB
Name:
zhang-et-al-2025.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2025
Copyright Info:
The Author(s)

Externe Referenzen

ausblenden:
externe Referenz:
https://doi.org/10.1021/jacs.5c01826 (Verlagsversion)
Beschreibung:
-
OA-Status:
Hybrid

Urheber

ausblenden:
 Urheber:
Zhang, Jiaxu1, Autor
Muñoz-Mármol, Rafael1, Autor
Fu, Shuai1, Autor
Li, Xiaodong2, Autor                 
Zheng, Wenhao1, Autor
Villa, Andrea1, Autor
Paternò, Giuseppe M.1, Autor
Pohl, Darius1, Autor
Tahn, Alexander1, Autor
Hambsch, Mike1, Autor
Mannsfeld, Stefan C. B.1, Autor
Li, Dongqi1, Autor
Xu, Hao1, Autor
Guo, Quanquan1, Autor
Wang, Hai I.1, Autor
Scotognella, Francesco1, Autor
Yu, Minghao1, Autor
Feng, Xinliang2, Autor                 
Affiliations:
1External Organizations, ou_persistent22              
2Department of Synthetic Materials and Functional Devices (SMFD), Max Planck Institute of Microstructure Physics, Max Planck Society, ou_3316580              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Charge/energy separation across interfaces of plasmonic materials is vital for minimizing plasmonic losses and enhancing their performance in photochemical and optoelectronic applications. While heterostructures combining plasmonic two-dimensional transition metal carbides/nitrides (MXenes) and semiconducting transition metal dichalcogenides (TMDs) hold significant potential, the mechanisms governing plasmon-induced carrier dynamics at these interfaces remain elusive. Here, we uncover a distinctive secondary excitation phenomenon and an ultrafast charge/energy transfer process in heterostructure films composed of macro-scale Ti3C2Tx and MoS2 films. Using Rayleigh–Bénard convection and Marangoni effect-induced self-assembly, we fabricate large-scale (square centimeters) Ti3C2Tx and MoS2 films composed of edge-connected monolayer nanoflakes. These films are flexibly stacked in a controlled sequence to form macroscopic heterostructures, enabling the investigation and manipulation of excited-state dynamics using transient absorption and optical pump-terahertz probe spectroscopy. In the Ti3C2Tx-MoS2 heterostructure, we observe a secondary excitation in MoS2 driven by the surface plasmon resonance of Ti3C2Tx. This phenomenon, with a characteristic rise time constant of ∼70 ps, is likely facilitated by acoustic phonon recycling across the interface. Further interfacial thermal transport engineering─achieved by tailoring the sequence and combination of interfaces in trilayer heterostructures─allows extending the characteristic time to ∼175 ps. Furthermore, we identify a sub-150 fs ultrafast charge/energy transfer process from Ti3C2Tx to MoS2. The transfer efficiency is strongly dependent on the excitation photon energy, resulting in amplified photoconductivity in MoS2 by up to ∼180% under 3.10 eV excitation. These insights are crucial for developing plasmonic MXene-based heterostructures, paving the way for advancements in photochemical and optoelectronic applications.

Details

ausblenden:
Sprache(n):
 Datum: 2025-03-072025-03-19
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1021/jacs.5c01826
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Journal of the American Chemical Society
  Andere : JACS
  Kurztitel : J. Am. Chem. Soc.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : American Chemical Society
Seiten: - Band / Heft: 147 (11) Artikelnummer: - Start- / Endseite: 10012 - 10022 Identifikator: ISSN: 0002-7863
CoNE: https://pure.mpg.de/cone/journals/resource/954925376870