English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Edge subdivisions and the L2-homology of right-angled Coxeter groups

Avramidi, G., Okun, B., & Schreve, K. (submitted). Edge subdivisions and the L2-homology of right-angled Coxeter groups.

Item is

Basic

show hide
Genre: Preprint
Latex : Edge subdivisions and the $L^2$-homology of right-angled Coxeter groups

Files

show Files
hide Files
:
2411.08009.pdf (Preprint), 338KB
Name:
2411.08009.pdf
Description:
File downloaded from arXiv at 2025-09-16 14:01
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show
hide
Description:
-
OA-Status:
Green

Creators

show
hide
 Creators:
Avramidi, Grigori1, Author                 
Okun, Boris1, Author           
Schreve, Kevin, Author
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Geometric Topology, Group Theory
 Abstract: If $L$ is a flag triangulation of $S^{n-1}$, then the Davis complex $Σ_L$ for the associated right-angled Coxeter group $W_L$ is a contractible $n$-manifold. A special case of a conjecture of Singer predicts that the $L^2$-homology of such $Σ_L$ vanishes outside the middle dimension. We give conditions which guarantee this vanishing is preserved under edge subdivision of $L$. In particular, we verify Singer's conjecture when $L$ is the barycentric subdivision of the boundary of an $n$-simplex, and for general barycentric subdivisions of triangulations of $S^{2n-1}$. Using this, we construct explicit counterexamples to a torsion growth analogue of Singer's conjecture.

Details

show
hide
Language(s): eng - English
 Dates: 2024-11-23
 Publication Status: Submitted
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: No review
 Identifiers: arXiv: 2411.08009
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: arXiv
Source Genre: Web Page
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -