English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Gas driven massive black hole binaries: signatures in the nHz gravitational wave background

Kocsis, B., & Sesana, A. (2011). Gas driven massive black hole binaries: signatures in the nHz gravitational wave background. Monthly Notices of the Royal Astronomical Society, 411(3), 1467-1479. doi:10.1111/j.1365-2966.2010.17782.x.

Item is

Files

show Files
hide Files
:
1002.0584 (Preprint), 814KB
Name:
1002.0584
Description:
File downloaded from arXiv at 2010-05-05 09:59
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
MNRAS411_1467.pdf (Any fulltext), 2MB
File Permalink:
-
Name:
MNRAS411_1467.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Kocsis, Bence, Author
Sesana, Alberto1, Author           
Affiliations:
1Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, Golm, DE, ou_24013              

Content

show
hide
Free keywords: Astrophysics, Cosmology and Extragalactic Astrophysics, astro-ph.CO
 Abstract: Pulsar timing arrays (PTAs) measure nHz frequency gravitational waves (GWs) generated by orbiting massive black hole binaries (MBHBs) with periods between 0.1-10 yr. Previous studies on the nHz GW background assumed that the inspiral is purely driven by GWs. However, torques generated by a gaseous disk can shrink the binary much more efficiently than GW emission, reducing the number of binaries at these separations. We use simple disk models for the circumbinary gas and for the binary-disk interaction to follow the orbital decay of MBHBs through physically distinct regions of the disk, until GWs take over their evolution. We extract MBHB cosmological merger rates from the Millennium simulation, generate Monte Carlo realizations of a population of gas driven binaries, and calculate the corresponding GW amplitudes of the most luminous individual binaries and the stochastic GW background. For stationary alpha-disks with alpha>0.1 we find that the nHz GW background can be significantly modified. The number of resolvable binaries is however not changed by the presence of gas; we predict 1-10 individually resolvable sources to stand above the noise for a 1-50 ns timing precision. Gas driven migration reduces predominantly the number of small total mass or unequal mass ratio binaries, which leads to the attenuation of the mean stochastic GW--background, but increases the detection significance of individually resolvable binaries.

Details

show
hide
Language(s):
 Dates: 2010-02-0220112011
 Publication Status: Issued
 Pages: 13 pages, 8 figures
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Monthly Notices of the Royal Astronomical Society
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Oxford : Blackwell Science
Pages: - Volume / Issue: 411 (3) Sequence Number: - Start / End Page: 1467 - 1479 Identifier: ISSN: 1365-8711
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000024150